Skip to main content

“Omics” Approaches for Understanding Soil Suppressiveness in Agriculture

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Disease suppressive soils are instrumental in combating phytopathogens, which cause severe diseases in plants. They provide an eco-friendly way to mitigate biotic stresses in agricultural systems worldwide. Efforts have been made to understand the mechanisms of disease suppressiveness in soil using culture-dependent and culture-independent methods. Omics approaches have provided useful insights into the key markers responsible for imparting antagonism against soil-borne plant pathogens. Specific genera such as Pseudomonas, Bacillus, Streptomyces, Lysobacter, and Trichoderma, along with antibiotics and siderophores, are the key constituents in disease suppressive soils. Disease suppressive potential of a soil is dependent on several factors such as soil pH and soil type, with one of the critical factors being the type of nutrient amendment applied to the soil. While the underlying mechanisms of growth inhibition of specific fungal pathogens such as Fusarium and Rhizoctonia solani in soil ecosystem have been well elucidated, there is restricted knowledge regarding “general-disease suppression”. The mechanisms responsible for imparting broad range suppressiveness can help us develop economically favourable agricultural management practices. In this chapter, we have critically reviewed significant investigations related to specific- and general-disease suppression where omics-based approaches have been adopted to study the microbial community dynamics of disease suppressive soils. Based on the reported studies, we have identified the potential role of diverse markers, compost amendments, and different microbial strains (producing key metabolites) in disease suppressiveness of soil. Thus, we propose that using different molecular and microbial markers, mapping of disease suppressive soils can efficiently be done across the globe. In addition, the effectiveness of synthetic microbial communities, and possibilities of transforming conducive soil by microbiome transfer from suppressive soil may be explored in the context of disease suppressiveness in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabouvette C (1986) Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. Agronomie 6:273–284

    Article  Google Scholar 

  • Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Path 28:57–64

    Article  Google Scholar 

  • Almario J, Kyselková M, Kopecký J et al (2013) Assessment of the relationship between geologic origin of soil, rhizobacterial community composition and soil receptivity to tobacco black root rot in Savoie region (France). Plant Soil 371:397–408

    Article  CAS  Google Scholar 

  • Berg G, Kurze S, Buchner A, Wellington EM, Smalla K (2000) Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt. Can J Microbiol 46:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg D, Von Kuster G, Coraor N et al (2010) Chapter 19. Galaxy: a web-based genome analysis tool for experimentalists. In: Current protocols in molecular biology, vol 10. Wiley Interscience, Hoboken, pp 11–21

    Google Scholar 

  • Blaya J, Marhuenda FC, Pascual JA, Ros M (2016) Microbiota characterization of compost using omics approaches opens new perspectives for Phytophthora root rot control. PLoS One 11:e0158048

    Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–340

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20

    Article  CAS  PubMed  Google Scholar 

  • Bonilla N, Gutiérrez-Barranquero J, Vicente A, Cazorla F (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4:475–491

    Article  Google Scholar 

  • Carrión VJ, Cordovez V, Tyc O et al (2018) Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J 12:2307–2321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrión VJ, Perez-Jaramillo J, Cordovez V et al (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–612

    Article  PubMed  CAS  Google Scholar 

  • Caulier S, Gillis A, Colau G et al (2018) Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha JY, Han S, Hong HJ et al (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10:119–129

    Article  CAS  PubMed  Google Scholar 

  • Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanism of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85–92

    Article  Google Scholar 

  • Chng S, Cromey M, Dodd S, Stewart A, Butler RC, Jaspers MV (2015) Take-all decline in New Zealand wheat soils and the microorganisms associated with the potential mechanisms of disease suppression. Plant Soil 397:239–259

    Article  CAS  Google Scholar 

  • Cordovez V, Carrion VJ, Etalo DW et al (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Cretoiu MS, Korthals GW, Visser JH, van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the Actinobacterial and Oxalobacter aceal communities in an experimental agricultural field. Appl Environ Microbiol 79:5291–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiellalatipes. Tetrahedron 58:7781–7784

    Article  CAS  Google Scholar 

  • De Corato U, Salimbeni R, De Pretis A (2018) Suppression of soil-borne pathogens in container media amended with on-farm composted agro-bioenergy wastes and residues under glasshouse condition. J Plant Dis Protect 125:213–226

    Google Scholar 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity, and activity of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • Dignam BE, O’Callaghan M, Condron LM, Kowalchuk GA, Van Nostrand JD, Zhou J, Wakelin SA (2018) Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: implications for disease suppression. PLoS One 13:e0196581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dukare AS, Prasanna R, Dubey SC, Nain L, Chaudhary V, Singh R, Saxena AK (2011) Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot 30:436–442

    Article  Google Scholar 

  • Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12:1600099

    Article  CAS  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez Expósito R, Postma J, Raaijmakers JM, De Bruijn I (2015) Diversity and activity of Lysobacter species from disease suppressive soils. Front Microbiol 6:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8:2529

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu YH, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72

    Article  Google Scholar 

  • Hayden HL, Rochfort SJ, Ezernieks V, Savin KW, Mele PM (2019) Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. Sci Total Environ 651:1627–1638

    Article  CAS  PubMed  Google Scholar 

  • Heinsch SC, Otto-Hanson L, Hsu SY, Kinkel L, Smanski MJ (2017) Genome sequences for Streptomyces spp. isolated from disease-suppressive soils and long-term ecological research sites. Genome Announc 5:e00493–e00417

    Article  PubMed  PubMed Central  Google Scholar 

  • Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2009) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    Article  PubMed  CAS  Google Scholar 

  • Hjort K, Presti I, Elväng A, Marinelli F, Sjöling S (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98:2819–2828

    Article  CAS  PubMed  Google Scholar 

  • Hunjan MS, Thakur A, Singh PP (2017) Identification and characterization of Pseudomonas fluorescens strains effective against Xanthomonas oryzae pv. Oryzae causing bacterial blight of rice in Punjab, India. J Appl Nat Sci 9:253–261

    Article  CAS  Google Scholar 

  • Johnsen MG, Hansen OC, Stougaard P (2010) Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239. Microb Cell Fact 9:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi D, Hooda KS, Bhatt JC, Mina BL, Gupta HS (2009) Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot 28:608–615

    Article  Google Scholar 

  • Liu X, Zhang S, Jiang Q et al (2016) Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep 6:1–11

    CAS  Google Scholar 

  • Liu L, Huang X, Zhao J, Zhang J, Cai Z (2019) Characterizing the key agents in a disease-suppressed soil managed by reductive soil disinfestation. Appl Environ Microbiol 85:e02992–e02918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauchline TH, Chedom-Fotso D, Chandra G et al (2015) An analysis of Pseudomonas genomic diversity in take-all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environ Microbiol 17:4764–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA et al (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent Pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • Mehta CM, Pudake RN, Srivastava R, Palni U, Sharma AK (2018) Development of PCR-based molecular marker for screening of disease-suppressive composts against Fusarium wilt of tomato (Solanum lycopersicum L.). 3 Biotech 8(7):306

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P (2015) Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. mBio 6:e00079–e00015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noble R, Roberts SJ (2004) Eradication of plant pathogens and nematodes during composting: a review. Plant Pathol 53:548–568

    Article  Google Scholar 

  • O’Kennedy MM, Crampton BG, Lorito M et al (2011) Expression of a β-1, 3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 77:335–345

    Article  CAS  Google Scholar 

  • Ossowicki A, Tracanna V, Petrus MLC et al (2020) Microbial and volatile profiling of soils suppressive to Fusarium culmorum of wheat. Proc R Soc B 287:20192527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56:115–124

    Article  Google Scholar 

  • Penton CR, Gupta VV, Tiedje JM et al (2014) Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 9:e93893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  CAS  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science 352:1392–1393

    Article  CAS  PubMed  Google Scholar 

  • Ros M, Blaya J, Baldrian P, Bastida F, Richnow HH, Jehmlich N, Pascual JA (2018) In vitro elucidation of suppression effects of composts to soil-borne pathogen Phytophthora nicotianae on pepper plants using 16S amplicon sequencing and metaproteomics. Renew Agr Food Syst, pp 1–9

    Google Scholar 

  • Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ (2012) Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis 96:718–725

    Article  PubMed  Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297

    Article  PubMed  Google Scholar 

  • Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Steinberg C (2018) Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Chateaurenard region. Front Microbiol 9:568

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomihama T, Nishi Y, Mori K et al (2016) Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere. Phytopathology 106:719–728

    Article  CAS  PubMed  Google Scholar 

  • van Agtmaal M, van Os G, Hol G et al (2015) Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Front Microbiol 6:701

    PubMed  PubMed Central  Google Scholar 

  • van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19:375–382

    Article  PubMed  Google Scholar 

  • van Elsas JD, Speksnijder AJ, van Overbeek LS (2008) A procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Methods 75:515–522

    Article  PubMed  CAS  Google Scholar 

  • Vida C, Bonilla N, de Vicente A, Cazorla FM (2016) Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells. Front Microbiol 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Hulbert SH, Schroeder KL et al (2013) Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol 79:7428–7438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota K, Hayakawa H (2015) Impact of antimicrobial lipopeptides from Bacillus sp. on suppression of Fusarium yellows of tatsoi. Microbes Environ 30:281–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Jing T, Chen Y et al (2019) Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol 19:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

SK wishes to acknowledge the fellowship received from University Grant Commission, Government of India. AB acknowledges the award of National Post-Doctoral Fellowship from the Science and Engineering Research Board, Department of Science and Technology, Government of India (PDF/2018/001905). The authors would acknowledge the grants received from IIT Delhi under IRD-MFIRP scheme (MI02024), and Department of Biotechnology, Government of India (BT/PR27680/BCE/8/1434/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatri, S., Bhattacharjee, A., Sharma, S. (2021). “Omics” Approaches for Understanding Soil Suppressiveness in Agriculture. In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_4

Download citation

Publish with us

Policies and ethics