Skip to main content

Abstract

The climate change, as evidenced by changes in temperature rise and increased CO2 concentration, is a major concern. According to the Intergovernmental Panel on Climate Change (IPCC), global temperature is anticipated to upsurge between 1.1 and 6.4 °C during the twenty-first century followed by alteration in precipitation patterns. Soils are directly linked to the climate system through the carbon, nitrogen, and hydrologic cycles. Because of this, the altered climate will have an effect on soil processes and properties. In the recent past, there are numerous studies conducted to study the impact of climate change on crop performance and soil properties. These studies indicated that climate change has a negative impact on soil health by increasing soil degradation through the loss of soil organic carbon, soil erosion, salinization, sodification, acidification, etc.   Reversing these downward spirals implies the implementation of best-proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, and use of biochar. Bringing back degraded soils under cultivation and sustaining soil health by the adoption of climate-smart agricultural practices is the only way to combat the negative imprints of climate change on soil health and fulfilling the food demands of the ever-growing population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya CL (2002) Integrated input management for sustainable crop production in rainfed agro-ecosystem. J Indian Soc Soil Sci 50:398–413

    Google Scholar 

  • Alauddin M, Quiggin J (2008) Agricultural intensification, irrigation and the environment in South Asia: issues and policy options. Ecol Econ 65:111–124

    Article  Google Scholar 

  • Antil RS, Singh M (2007) Effects of organic manures and fertilizers on organic matter and nutrients status of the soil. Arch Agron Soil Sci 53(5):519–528

    Article  CAS  Google Scholar 

  • Balota EL, Colozzi A, Andrade DS, Dick RP (2004) Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res 77:137–145

    Article  Google Scholar 

  • Bhattacharyya R, Pandey AK, Gopinath KA, Mina BL, Bisht JK, Bhatt JC (2016) Fertilization and crop residue addition impacts on yield sustainability under a rainfed maize-wheat system in the Himalayas. Proc Natl Acad Sci India Sec B: Biol Sci 86:21–32

    Article  CAS  Google Scholar 

  • Brickman R, Sombroek WG (1996) The effect of global change on soil condition in relation to plant growth and food production. In: Bazzaz FA, Sombroek WG (eds) Global climate change and agricultural production: direct and indirect effects of changing hydrological, pedological and plant physiological processes. Food and Agriculture Organization, Rome, Italy. ISBN-13:9789251039878

    Google Scholar 

  • CCAFS (2013) Big facts on climate change, agriculture and food security. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark

    Google Scholar 

  • Chaudhari SK, Chinchmalatpure AR, Sharma DK (2013) Climate change impact on salt affected soils and their crop productivity. In: Chaudhari SK, Chinchmalatpure AR, Sharma DK (eds) CSSRI/Karnal/Technical Manual/2013/4. Central Soil Salinity Research Institute, Karnal, Haryana, India, pp 1–10

    Google Scholar 

  • Choudhary M, Ghasal PC, Kumar S, Yadav RP, Singh S, Meena VS, Bisht JK (2016) Conservation agriculture and climate change: an overview. In: Bisht JK et al (eds) Conservation agriculture. https://doi.org/10.1007/978-981-10-2558-7_1

  • Dordas C (2015) Nutrient management perspectives. In: Farooq M, Siddique KHM (eds) Conservation agriculture. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-11620-4_4

    Chapter  Google Scholar 

  • Du Preez CC, Steyn JT, Kotze E (2001) Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol. Soil Tillage Res 63:25–33

    Article  Google Scholar 

  • FAO (2001) Conservation agriculture case studies in Latin America and Africa. Introduction. FAO Soils Bulletin No. 78. FAO, Rome

    Google Scholar 

  • FAO (2003) World agriculture: towards 2015/2030. An FAO perspective. FAO, Rome. 97 pp

    Google Scholar 

  • Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron LM (2014) Biochar and fertiliser applications opinion phosphorus fractionation and wheat yield. Biol Fertil Soils 50(1):169–178

    Article  CAS  Google Scholar 

  • Gao T, Gao M, Peng J, Li N (2018) Effects of different amount of biochar on nitrogen, phosphorus and potassium nutrients in soil. ACMME 2018. IOP Conf. Series: Materials Science and Engineering 394 (2018) 022043. https://doi.org/10.1088/1757-899X/394/2/022043

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327:828–831

    Article  CAS  PubMed  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with biochar - a review. Biol Fertil Soils 35(4):219–230

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Govaerts B, Sayre KD, Lichter K, Dendooven L, Deckers J (2007) Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rainfed maize/wheat systems. Plant Soil 291:39–54

    Article  CAS  Google Scholar 

  • Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre KD, Dixon J, Dendooven L (2009) Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit Rev Plant Sci 28:97–122

    Article  CAS  Google Scholar 

  • Huntingford C, Lambert FH, Gash JHC, Taylor CM, Challinor AJ (2005) Aspects of climate change prediction relevant to crop productivity. Philos Trans R Soc B 360:1999–2009

    Article  Google Scholar 

  • ICAR (2015) Vision 2050. Indian Council of Agricultural Research, New Delhi. https://icar.org.in/files/Vision-2050-ICAR.pdf

    Google Scholar 

  • Ismail I, Blevins RL, Frye WW (1994) Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci Soc Am J 58:193–198

    Article  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems - a soil science perspective. Agric Ecosyst Environ 104:399–417

    Article  CAS  Google Scholar 

  • Jat HS, Datta A, Sharma PC, Kumar V, Yadav AK, Choudhary M, Choudhary V, Gathala MK, Sharma DK, Jat ML, Yaduvanshi NPS, Singh G, McDonald A (2018) Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch Agron Soil Sci 64(4):531–545. https://doi.org/10.1080/03650340.2017.1359415

    Article  CAS  Google Scholar 

  • Jha P, Neenu S, Rashmi I, Meena BP, Jatav RC, Lakaria BL, Biswas AK, Singh M, Patra AK (2016) Ameliorating effects of Leucaena biochar on soil acidity and exchangeable ions. Commun Soil Sci Plant Anal 47(10):1252–1262

    Article  CAS  Google Scholar 

  • Karmakar R, Das I, Datta D, Rakshit A (2016) Potential effect of climate change on soil properties: a review. Sci Int 4:51–73

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R, Kienzle J (2015) Overview of the worldwide spread of conservation agriculture. Field Actions Sci Rep 8:1–12

    Google Scholar 

  • Koning NBJ, van Ittersum MK, Becx GA, van Boekel MAJS, Brandenburg WA (2008) Long-term global availability of food: continued abundance or new scarcity? J Life Sci 55:229–292

    Google Scholar 

  • Kumar R, Gautam HR (2014) Climate change and its impact on agricultural productivity in India. J Climatol Weather Forecasting 2:109. https://doi.org/10.4172/2332-2594.1000109

    Article  Google Scholar 

  • Kushwaha CP, Tripathi SK, Singh KP (2000) Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem. Soil Tillage Res 56:153–166

    Article  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Logan TJ, Fausey NR (1990) Long-term tillage effects on a mollic ochraqualf in north West Ohio. 3. Soil nutrient profile. Soil Tillage Res 15:371–382

    Article  Google Scholar 

  • Lele U (2010) Food security for a billion poor. Science 326:1554

    Article  CAS  Google Scholar 

  • Leys A, Govers G, Gillijns K, Poesen J (2007) Conservation tillage on loamy soils: explaining the variability in interrill runoff and erosion reduction. Eur J Soil Sci 58:1425–1436

    Article  Google Scholar 

  • Mackay AD, Kladivko EJ, Barber SA, Griffith DR (1987) Phosphorus and potassium uptake by corn in conservation tillage systems. Soil Sci Soc Am J 51:970–974

    Article  CAS  Google Scholar 

  • Mall RK, Gupta A, Singh R, Singh RS, Rathore LS (2005) Water resources and climate change: an Indian perspective. Curr Sci 90:1610–1626

    Google Scholar 

  • Mall RK, Singh R, Gupta A, Singh RS, Srinivasan G (2006) Impact of climate change on Indian agriculture: a review. Climate Change 78:445–478

    Article  Google Scholar 

  • Matowo PR, Pierzynski GM, Whitney D, Lamond RE (1999) Soil chemical properties as influenced by tillage and nitrogen source, placement, and rates after 10 years of continuous sorghum. Soil Tillage Res 50:11–19

    Article  Google Scholar 

  • Meena BP, Kumar A, Meena SR, Dhar S, Rana DS, Rana KS (2013) Effect of sources and levels of nutrients on growth and yield behaviour of popcorn (Zea mays) and potato (Solanum tuberosum) sequence. Indian J Agron 58(4):474–479

    Google Scholar 

  • Meena BP, Kumar A, Lal B, Sinha NK, Tiwari PK, Dotaniya ML, Jat NK, Meena VD (2015) Soil microbial, chemical properties and crop productivity as affected by organic manure application in popcorn (Zea mays L. Var. everta). Afr J Microbiol Res 9(21):1402–1418

    Article  Google Scholar 

  • Meena BP, Shirale AO, Dotaniya ML, Jha P, Meena AL, Biswas AK, Patra AK (2016) Conservation agriculture: a new paradigm for improving input use efficiency and crop productivity. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture conservation agriculture—an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 39–69

    Google Scholar 

  • Meena BP, Biswas AK, Singh M, Chaudhary RS, Singh AB, Das H, Patra AK (2019) Long-term sustaining crop productivity and soil health in maize–chickpea system through integrated nutrient management practices in Vertisols of Central India. Field Crops Res 232:62–76

    Article  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE (1998) Mitigating agricultural emissions of methane. Clim Chang 40:39–80

    Article  CAS  Google Scholar 

  • NBSS & LUP (2010) Annual report. National Bureau of Soil Survey and Land Use Planning, Nagpur

    Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65

    Article  CAS  Google Scholar 

  • Pandian K, Arunachalam P, Govindraj M (2014) Implications and ways to enhance nutrient use efficiency under changing climate. In: Roychowdhury R (ed) Crop improvement in the era of climate change. I.K. International Publication House Pvt. Ltd, New Delhi, pp 116–142

    Google Scholar 

  • Pathak H (2015) Greenhouse gas emission from Indian agriculture: trends, drivers and mitigation strategies. Proc Indian Natl Sci Acad 81(5):1133–1149

    Article  Google Scholar 

  • Paustian K, Babcock BA, Hatfield J, Lal R, McCarl BA, McLaughlin S, Mosier A, Rice C, Robertson GP, Rosenberg NJ, Rosenzweig C, Schlesinger WH, Zilberman D (2004) Agricultural mitigation of greenhouse gases: science and policy options. CAST (Council on Agricultural Science and Technology) report, R141 , ISBN 1-887383-26-3, p 120

    Google Scholar 

  • Randall GW, Iragavarapu TK (1995) Impact of long-term tillage systems for continuous corn on nitrate leaching to tile drainage. J Environ Qual 24:360–366

    Article  CAS  Google Scholar 

  • Roberts (2010) http://www.ipni.net/ipniweb/portal/4r.nsf/article/communicationsguide

  • Ruser R, Schulz R (2015) The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J Plant Nutr Soil Sci 178(2):171–188

    Article  CAS  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365:442–444

    Article  PubMed  Google Scholar 

  • Sharda VN (2011) Strategies for arresting land degradation in India. In: Sarkar D, Azad AK, Singh SK, Akter N (eds) Strategies for arresting land degradation in South Asian countries. SAARC Agriculture Centre, Bangladesh, pp 75–132

    Google Scholar 

  • Shirale AO, Kharche VK, Zadode RS, Meena BP, Rajendiran S (2017) Soil biological properties and carbon dynamics subsequent to organic amendments addition in sodic black soils. Arch Agron Soil Sci 63(14):2023–2034. https://doi.org/10.1080/03650340.2017.1322194

    Article  CAS  Google Scholar 

  • Shirale AO, Kharche VK, Rohi GS, Meena BP (2018) Ameliorative impact of different organic amendments on sodicity and nutrient dynamics in sodic black calcareous soils of Central India. Agrochimica LXII(3):219–236. https://doi.org/10.12871/00021857201811

    Article  CAS  Google Scholar 

  • Singh G (2015) Agriculture diversification for food, nutrition, livelihood and environmental security: challenges and opportunities. Indian J Agron 60(2):172–184

    Google Scholar 

  • Singh SK, Kumar M, Sharma BK (2009) Change of soil properties of India Rajasthan. J Indian Soc Soil Sci 57:24–30

    Google Scholar 

  • Singh M, Wanjari RH, Kumar U, Chaudhari SK (2019) AICRP on long-term fertilizer experiments: salient achievements and future directions. Indian J Fertil 15(4):356–372

    Google Scholar 

  • Somasundaram J, Hati KM, Chaudhary RS, Ramesh K, Biswas AK, Shukla AK (2017) Enhancing nutrient use efficiency through conservation agriculture. In: Ramesh K, Biswas AK, Lakaria B, Srivastava S, Patra AK (eds) Enhancing nutrient use efficiency. New India Publishing Agency, New Delhi, pp 185–198

    Google Scholar 

  • Sparkes J, Stoutjesdijk P (2011) Biochar: implications for agricultural productivity. ABARES technical report 11.6. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • St Clair SB, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  CAS  Google Scholar 

  • Swinnen J, Squicciarini P (2012) Mixed messages on prices and food security. Science 335:405–406

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Tieszen LL, Liu S, Tachie-Obeng E (2010) Modeling to evaluate the response of savanna-derived cropland to warming-drying stress and nitrogen fertilizers. Clim Chang 100:703–715

    Article  CAS  Google Scholar 

  • Tey YS, Brindal M (2012) Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precis Agric 13:713–730

    Article  Google Scholar 

  • US-EPA (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006, Washington, DC. http://www.epa.gov/nonco2/econinv/downloads/GlobalAnthroEmissionsReport.pdf. Accessed 26 Mar 2007

  • Vanlauwe BJ, Wendt KE, Giller M, Corbeels B, Gerard C, Noltega A (2014) A fourth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crops Res 155:10–13

    Article  Google Scholar 

  • Verachtert E, Govaerts B, Lichter K, Sayre KD, Ceballos-Ramirez JM, Luna-Guido ML, Deckers J, Dendooven L (2009) Short term changes in dynamics of C and N in soil when crops are cultivated on permanent raised beds. Plant Soil 320:281–293

    Article  CAS  Google Scholar 

  • Wienhold BJ, Halvorson AD (1999) Nitrogen mineralization responses to cropping, tillage, and nitrogen rate in the Northern Great Plains. Soil Sci Soc Am J 63:192–196

    Article  CAS  Google Scholar 

  • Wu W, Ma B (2015) Integrated nutrient management for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ 512–513:415–427

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Wu Y, quaternary Shu maple (2014) Effects of biochar administration of fertility and crop growth. Chin Hortic Abstr 12:207–209

    Google Scholar 

  • Yu OY, Raichle B, Sink S (2013) Impact of biochar on the water holding capacity of loamy sand soil. Int J Ener Environ Eng 4:44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirale, A.O. et al. (2021). Nutrient Management Strategies in the Climate Change Scenario. In: Jayaraman, S., Dalal, R.C., Patra, A.K., Chaudhari, S.K. (eds) Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security . Springer, Singapore. https://doi.org/10.1007/978-981-16-0827-8_20

Download citation

Publish with us

Policies and ethics