Skip to main content

Applications of Soil Bacterial Community in Carbon Sequestration: An Accost Towards Advanced Eco-sustainability

  • Chapter
  • First Online:
Role of Microbial Communities for Sustainability

Abstract

Soil carbon content is regulated by multiple factors out of which bacterial communities play a significant role in soil system stability supporting eco-sustainability. In recent times, environmentally friendly approaches have been developed, which are more preferred over the usage of chemical methods in restoring soil stability. Out of various cutting-edge technologies available, which demand high input in terms of resources, a gradual inclination towards soil bacterial communities form a crucial component of soil microbial communities enhancing carbon sequestration. The multifaceted role of bacterial communities in carbon storage basically relies on microbial dynamics and interrelationships between formation and breakdown of end products. The regulation of C-cycling in soil is determined by various factors like microbial load, species richness, bacterial diversity, community structure, and enzyme activity. Soil microbes’ interaction with soil aggregates is a key factor in restoration, conversion, reducing erosion, and eco-sustainability. Gradually changing climates, abiotic stress, and elevated CO2 levels are likely to affect plant–microbe interactions disturbing carbon cycling that lead to a shift in bacterial profile, carbon efflux pattern of roots that leads to hamper rhizosphere diversity and overall plant growth. This chapter highlights the biological aspects of sequestration, factors affecting it, and application of bacterial diversity in restoring soil organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Martínez V, Zobeck TM, Gill TE, Kennedy AC (2003) Enzyme activities and microbial community structure in semiarid agricultural soils. Biol Fertil Soils 38:216–227

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration—what do we really know? Agric Ecosyst Environ 118:1–5

    Article  CAS  Google Scholar 

  • Balota EL, Colozzi Filho A, Andrade DS, Dick RP (2004) Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res 77:137–145

    Article  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Blair GJ, Lefroy RD, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2008) No-tillage and soil-profile carbon sequestration: an on-farm assessment. Soil Sci Soc Am J 72:693–701

    Article  CAS  Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    Article  CAS  Google Scholar 

  • Buée M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  CAS  Google Scholar 

  • Buhre BJ, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307

    Article  CAS  Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  CAS  Google Scholar 

  • Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310:1029–1031

    Article  CAS  PubMed  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro H, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Heiling M, Resch C, Mbaye M, Gruber R, Dercon G (2018) Does maize and legume crop residue mulch matter in soil organic carbon sequestration? Agric Ecosyst Environ 265:123–131

    Article  CAS  Google Scholar 

  • Chevallier T, Blanchart E, Girardin C, Mariotti A, Albrecht A, Feller C (2001) The role of biological activity (roots, earthworms) in medium-term C dynamics in vertisol under a Digitaria decumbens (Gramineae) pasture. Appl Soil Ecol 16:11–21

    Article  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Curtis TP, Sloan WT (2005) Exploring microbial diversity—a vast below. Science 309:1331–1333

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Biogeochemistry: soil warming and organic carbon content. Nature 408:789–790

    Article  CAS  PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • de Moraes Sá CJ, Cerri CC, Dick WA, Lal R, Solismar Filho PV, Piccolo MC, Feigl BE (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci Soc Am J 65:1486–1499

    Article  Google Scholar 

  • Derner JD, Schuman GE (2007) Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. J Soil Water Conserv 62:77–85

    Google Scholar 

  • Díaz S, Hector A, Wardle DA (2009) Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Curr Opin Environ Sustain 1:55–60

    Article  Google Scholar 

  • Dignac MF, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:14–27

    Article  CAS  Google Scholar 

  • Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep 7:44641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils 1. Soil Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Getter KL, Rowe DB, Robertson GP, Cregg BM, Andresen JA (2009) Carbon sequestration potential of extensive green roofs. Environ Sci Technol 43:7564–7570

    Article  CAS  PubMed  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Hall DO, Woods J, House J (1992) Biological systems for uptake of carbon dioxide. Energy Convers Manag 33:721–728

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177

    Article  PubMed  Google Scholar 

  • Havlin JL, Kissel DE, Maddux LD, Claassen MM, Long JH (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:448–452

    Article  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289

    Article  CAS  PubMed  Google Scholar 

  • Henneron L, Bernard L, Hedde M, Pelosi C, Villenave C, Chenu C, Bertrand M, Girardin C, Blanchart E (2015) Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron Sustain Dev 35:169–181

    Article  Google Scholar 

  • Jenny H (1994) Factors of soil formation: a system of quantitative pedology. Courier Corporation, Dover Publications, New York

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595

    Article  CAS  Google Scholar 

  • Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271:115–123

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Das D (2014) Carbon dioxide sequestration by biological processes. In: Transformation and utilization of carbon dioxide. Springer, Berlin, Heidelberg, pp 303–334

    Chapter  Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci India 91:885–890

    CAS  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184

    Article  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443

    Article  CAS  Google Scholar 

  • Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A (2017) Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS One 12:e0180442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1999) Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation. Can J Soil Sci 79:273–280

    Article  Google Scholar 

  • Manning DA, Renforth P (2012) Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils. Environ Sci Technol 47:135–141

    Article  PubMed  CAS  Google Scholar 

  • Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • McCarl BA, Metting FB, Rice C (2007) Soil carbon sequestration. Clim Chang 80:1–3

    Article  CAS  Google Scholar 

  • Mehar SK, Sundaramoorthy S (2018) Carbon sequestration and the significance of soil fungi in the process. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer, Singapore, pp 467–482

    Chapter  Google Scholar 

  • Oelkers EH, Cole DR (2008) Carbon dioxide sequestration a solution to a global problem. Elements 4:305–310

    Article  CAS  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KV, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469

    Article  CAS  PubMed  Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  CAS  PubMed  Google Scholar 

  • Percival HJ, Parfitt RL, Scott NA (2000) Factors controlling soil carbon levels in New Zealand grasslands is clay content important? Soil Sci Soc Am J 64:1623–1630

    Article  CAS  Google Scholar 

  • Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane-based air separation. Energy Proc 1:495–502

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric Ecosyst Environ 200:33–41

    Article  CAS  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Protocol K (1997) United Nations framework convention on climate change. Kyoto Protocol, Kyoto, 19

    Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Da Rocha HR, De Camargo PB, Crill P, Daube BC, De Freitas HC, Hutyra L (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  CAS  PubMed  Google Scholar 

  • Sands P (1992) The United Nations framework convention on climate change. Rev Eur Commun Int Environ Law 1:270–277

    Article  Google Scholar 

  • Schulze ED (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147–166

    Article  CAS  Google Scholar 

  • Schutter ME, Dick RP (2002) Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci Soc Am J 66:142–153

    Article  CAS  Google Scholar 

  • Sedjo R, Sohngen B (2012) Carbon sequestration in forests and soils. Annu Rev Resour Econ 4:127–144

    Article  Google Scholar 

  • Simons M, Brand I, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Milard P, Whitely AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  PubMed  Google Scholar 

  • Six J, Paustian K, Elliott ET, Combrink C (2000) Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64:681–689

    Article  CAS  Google Scholar 

  • Six J, Frey SD, Thie RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Srivastava P, Kumar A, Behera SK, Sharma YK, Singh N (2012) Soil carbon sequestration: an innovative strategy for reducing atmospheric carbon dioxide concentration. Biodivers Conserv 21:1343–1358

    Article  Google Scholar 

  • Srivastava S, Bharti RK, Thakur IS (2015) Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate. Environ Sci Pollut Res 22:1499–1511

    Article  CAS  Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396

    Article  CAS  Google Scholar 

  • Vespa M (2002) Climate Change 2001: Kyoto at Bonn and Marrakech. Ecol Law Q 29:395

    Google Scholar 

  • Voroney RP (2007) The soil habitat. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 3rd edn. Elsevier, Academic, London, pp 25–49

    Chapter  Google Scholar 

  • Whitmarsh J (1999) The photosynthetic process. In: Singhal GS, Renger G, Sopory SK, Irrgang KD (eds) Concepts in photobiology. Springer, Dordrecht, pp 11–51

    Chapter  Google Scholar 

  • Wilson EO (2002) The future of life. ISBN 0679450785

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wu H, Xu Z et al (2010) Winter cover crops increase soil carbon and nitrogen cycling processes and microbial functional diversity. In: Proceedings of the 19th world congress of soil science: soil solutions for a changing world, Brisbane, 1–6 Aug 2010. Working Group 3.5 Paddy soils and water. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, pp 47–50

    Google Scholar 

  • Zhu Y-G, Miller RC (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil plant systems. Trends Plant Sci 8:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, MNNIT Allahabad for providing the necessary facilities and financial support for this work. The support provided by MHRD sponsored project “Design and Innovation Centre” is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, V. et al. (2021). Applications of Soil Bacterial Community in Carbon Sequestration: An Accost Towards Advanced Eco-sustainability. In: Seneviratne, G., Zavahir, J.S. (eds) Role of Microbial Communities for Sustainability. Microorganisms for Sustainability, vol 29. Springer, Singapore. https://doi.org/10.1007/978-981-15-9912-5_8

Download citation

Publish with us

Policies and ethics