Skip to main content
  • 1416 Accesses

Abstract

Respiratory gas exchange refers to the exchange of oxygen and carbon dioxide between alveoli and blood, blood and tissue. The former is lung ventilation, the latter is tissue ventilation. This exchange is a direct diffusion process, which refers to the transfer of gas molecules from the higher pressure side to the lower pressure side. The power of gas diffusion is the difference in gas partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner PD. The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases. Eur Respir J. 2015;45(1):227–43.

    Article  CAS  PubMed  Google Scholar 

  2. Aboab J, Louis B, Jonson B, et al. Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Intensive Care Med. 2006;32(10):1494–7.

    Article  PubMed  Google Scholar 

  3. Hughes JM. Assessing gas exchange. Chron Respir Dis. 2007;4(4):205–14.

    Article  CAS  PubMed  Google Scholar 

  4. Feiner JR, Weiskopf RB. Evaluating pulmonary function: an assessment of PaO2/FIO2. Crit Care Med. 2017;45(1):e40–8.

    Article  PubMed  Google Scholar 

  5. Cutts S, Talboys R, Paspula C, et al. Adult respiratory distress syndrome. Ann R Coll Surg Engl. 2017;99(1):12–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mellemgaard K. The alveolar-arterial oxygen difference: its size and components in normal man. Acta Physiol Scand. 1966;67(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  7. Wong JJ, Loh TF, Testoni D, et al. Epidemiology of pediatric acute respiratory distress syndrome in Singapore: risk factors and predictive respiratory indices for mortality. Front Pediatr. 2014;25(2):78.

    Google Scholar 

  8. Floyd J, Wu L, Hay BD, et al. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings. Nature. 2015;528(7580):S53–9.

    Article  PubMed  Google Scholar 

  9. Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med. 2008;36(3):669–75.

    Article  PubMed  Google Scholar 

  10. Elliott JE, Duke JW, Hawn JA, et al. Increased cardiac output, not pulmonary artery systolic pressure, increases intrapulmonary shunt in healthy humans breathing room air and 40% O2. J Physiol. 2014;592(20):4537–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawamura G, Kitamura T, Homma I, et al. Mechanisms underlying the improvement of arterial oxygenation using positive end-expiratory pressure during surgery under sevoflurane anesthesia and propofol anesthesia: a retrospective clinical study. Masui. 2013;62(6):652–9.

    PubMed  Google Scholar 

  12. Van Meter A, Williams U, Zavala A, et al. Beat to beat: a measured look at the history of pulse oximetry. J Anesth Hist. 2017;3(1):24–6.

    Article  PubMed  Google Scholar 

  13. Jubran A. Pulse oximetry. Crit Care. 2015;19:272.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fine I, Kaminsky A. Possible error in reflection pulse oximeter readings as a result of applied pressure. J Healthcare Eng. 2019;7293813

    Google Scholar 

  15. Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med. 2013;107(6):789–99.

    Article  PubMed  Google Scholar 

  16. Pretto JJ, Roebuck T, Beckert L, et al. Clinical use of pulse oximetry: official guidelines from the Thoracic Society of Australia and new Zealand. Respirology. 2014;19(1):38–46.

    Article  PubMed  Google Scholar 

  17. Terrill PI. A review of approaches for analysing obstructive sleep apnoea-related patterns in pulse oximetry data. Respirology. 2019;25:475. https://doi.org/10.1111/resp.13635.

    Article  PubMed  Google Scholar 

  18. Plana MN, Zamora J, Suresh G, et al. Pulse oximetry screening for critical congenital heart defects. Cochrane Database Syst Rev. 2018;3:D11912.

    Google Scholar 

  19. Huijgen QC, Effing TW, Hancock KL, et al. Knowledge of pulse oximetry among general practitioners in South Australia. Prim Care Respir J. 2011;20(4):456–8.

    Article  PubMed  Google Scholar 

  20. Kiekkas P, Alimoutsi A, Tseko F, et al. Knowledge of pulse oximetry: comparison among intensive care, anesthesiology and emergency nurses. J Clin Nurs. 2013;22(5–6):828–37.

    Article  PubMed  Google Scholar 

  21. Nitzan M, Romem A, Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl). 2014;7:231–9.

    Google Scholar 

  22. Hess DR. Pulse oximetry: beyond SpO2. Respir Care. 2016;61(12):1671–80.

    Article  PubMed  Google Scholar 

  23. Tusman G, Bohm SH, Suarez-Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg. 2017;124(1):62–71.

    Article  PubMed  Google Scholar 

  24. Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12(3):263–8.

    Article  PubMed  Google Scholar 

  25. Vincent JL. The pulmonary artery catheter. J Clin Monit Comput. 2012;26(5):341–5.

    Article  PubMed  Google Scholar 

  26. Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation. 1969;40:165–72.

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu S, Enoki Y, Kohzuki H, et al. Determination of Hufner’s factor and inactive hemoglobins in human, canine, and murine blood. Jpn J Physiol. 1986;36(5):1047–51.

    Article  CAS  PubMed  Google Scholar 

  28. Bizouarn P, Blanloeil Y, Pinaud M. Comparison between oxygen consumption calculated by Fick’s principle using a continuous thermodilution technique and measured by indirect calorimetry. Br J Anaesth. 1995;75(6):719–23.

    Article  CAS  PubMed  Google Scholar 

  29. Walton RAL, Hansen BD. Venous oxygen saturation in critical illness. J Vet Emerg Crit Care (San Antonio). 2018;28(5):387–97.

    Article  Google Scholar 

  30. Reinhart K, Kuhn HJ, Hartog C, et al. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30(8):1572–8.

    Article  PubMed  Google Scholar 

  31. Van BPA, Van IJ, Boerma EC, Holman ND, et al. No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care. 2010;14(6):R219.

    Article  Google Scholar 

  32. Kopterides P, Bonovas S, Mavrou I, et al. Venous oxygen saturation and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock. Shock. 2009;31(6):561–7.

    Article  PubMed  Google Scholar 

  33. Reinhart K, Rudolph T, Bredle DL, et al. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest. 1989;95:1216–21.

    Article  CAS  PubMed  Google Scholar 

  34. Van Beest PA, Van der Schors A, Liefers H, et al. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation. Crit Care Med. 2012;40(12):3196–201.

    Article  PubMed  CAS  Google Scholar 

  35. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  CAS  PubMed  Google Scholar 

  36. Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Article  CAS  PubMed  Google Scholar 

  37. Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158(6):1763–9.

    Article  CAS  PubMed  Google Scholar 

  38. Georgakas I, Boutou AK, Pitsiou G, et al. Central venous oxygen saturation as a predictor of a successful spontaneous breathing trial from mechanical ventilation: a prospective, nested case-control study. Open Respir Med J. 2018;12:11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teixeira C, da Silva NB, Savi A, Vieira SR, Nasi LA, Friedman G, et al. Central venous saturation is a predictor of reintubation in difficult-to-wean patients. Crit Care Med. 2010;38(2):491–6.

    Article  PubMed  Google Scholar 

  40. Lipcsey M, Woinarski NC, Bellomo R. Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care. Ann Intensive Care. 2012;2(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Creteur J. Muscle StO2 in critically ill patients. Curr Opin Crit Care. 2008;14(3):361–6.

    Article  PubMed  Google Scholar 

  42. Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santora RJ, Santora RJ, Moore FA. Monitoring trauma and intensive care unit resuscitation with tissue hemoglobin oxygen saturation. Crit Care. 2009;13(Suppl 5):S10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Millikan GA. Experiments on muscle haemoglobin in vivo; the instantaneous measurement of muscle metabolism. Proc R Soc Lond B. 1937;123:218–24.

    Article  CAS  Google Scholar 

  45. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ferrari M, Giannini I, Sideri G, et al. Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol. 1985;191:873–82.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrari M, Zanette E, Sideri G, et al. Effects of carotid compression, as assessed by near infrared spectroscopy, upon cerebral blood volume and hemoglobin oxygen saturation. J R Soc Med. 1987;80(2):83–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boushel R, Langberg H, Olesen J, et al. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 2001;11(4):213–22.

    Article  CAS  PubMed  Google Scholar 

  49. Ward KR, Ivatury RR, Barbee RW, et al. Near infrared spectroscopy for evaluation of the trauma patient: a technology review. Resuscitation. 2006;68:27–44.

    Article  PubMed  Google Scholar 

  50. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol (1985). 1994;77:2740–7.

    Article  CAS  Google Scholar 

  51. Marin T, Moore J. Understanding near-infrared spectroscopy. Adv Neonatal Care. 2011;11:382–8.

    Article  PubMed  Google Scholar 

  52. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol (1985). 1994;77:2740–7.

    Article  CAS  Google Scholar 

  53. Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gómez H, Torres A, Polanco P, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response. Intensive Care Med. 2008;34:1600–7.

    Article  PubMed  Google Scholar 

  55. Gómez H, Mesquida J, Simon P, et al. Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds. Crit Care. 2009;13(suppl 5):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Orbegozo Cortes D, Rahmania L, Irazabal M, et al. Microvascular reactivity is altered early in patients with acute respiratory distress syndrome. Respir Res. 2016;17:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Poriazi M, Kontogiorgi M, Angelopoulos E, et al. Changes in thenar muscle tissue oxygen saturation assessed by near-infrared spectroscopy during weaning from mechanical ventilation. Minerva Anestesiol. 2014;80:666–75.

    CAS  PubMed  Google Scholar 

  58. Kwon Y, Lee SH, Ryoo HC, Patrick H. Noninvasive thenar muscle tissue oxygen saturation as a surrogate of central venous oxygen saturation in patients with severe sepsis: 223-T. Crit Care Med. 2005;33(12):A167.

    Article  Google Scholar 

  59. Napoli AM, Machan JT, Forcada A, Corl K, Gardiner F. Tissue oxygenation does not predict central venous oxygenation in emergency department patients with severe sepsis and septic shock. Acad Emerg Med. 2010;17:349–52.

    Article  PubMed  Google Scholar 

  60. Mesquida J, Masip J, Gili G, Artigas A, Baigorri F. Thenar oxygen saturation measured by near infrared spectroscopy as a noninvasive predictor of low central venous oxygen saturation in septic patients. Intensive Care Med. 2009;35:1106–9.

    Article  PubMed  Google Scholar 

  61. Allan C, Philips H, Kemp J, Celinski M, Jonas M. Near infrared spectroscopy (NIRS) and its comparison with traditional parameters of oxygen delivery in septic intensive care patients. Int Care Med. 2009;35(suppl 1):S28.

    Google Scholar 

  62. Gómez H, Torres A, Polanco P, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response. Intensive Care Med. 2008;34:1600–7.

    Article  PubMed  Google Scholar 

  63. Creteur J, Carollo T, Soldati G, et al. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33:1549–56.

    Article  PubMed  Google Scholar 

  64. Messerer M, Daniel RT, Oddo M. Neuromonitoring after major neurosurgical procedures. Minerva Anestesiol. 2012;78:810–22.

    CAS  PubMed  Google Scholar 

  65. Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sun S, Liu NH, Huang SQ. Role of cerebral oxygenation for prediction of hypotension after spinal anesthesia for caesarean section. J Clin Monit Comput. 2016;30:417–21.

    Article  PubMed  Google Scholar 

  67. Kerz T, Beyer C, Huthmann A, et al. Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension. J Clin Monit Comput. 2016;30:641–7.

    Article  PubMed  Google Scholar 

  68. Storm C, Leithner C, Krannich A, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients? A prospective outcome study. Resuscitation. 2014;85:1037–41.

    Article  CAS  PubMed  Google Scholar 

  69. Wahr JA, Tremper KK, Samra S, Delpy DT. Near-infrared spectroscopy: theory and applications. J Cardiothorac Vasc Anesth. 1996;10:406–18. https://doi.org/10.1016/S1053-0770(96)80107-8.

    Article  CAS  PubMed  Google Scholar 

  70. Edmonds HL, Rodriguez RA, Audenaert SM, Austin EH, Pollock SB, Ganzel BL. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth. 1996;10:15–23.

    Article  PubMed  Google Scholar 

  71. Newton E, Butskiy O, Shadgan B, et al. Outcomes of free flap reconstructions with near-infrared spectroscopy (NIRS) monitoring: a systematic review. Microsurgery. 2019;

    Google Scholar 

  72. Jung D, Park S, Lee C, et al. Recent progress on near-infrared photoacoustic imaging: imaging modality and organic semiconducting agents. Polymers (Basel). 2019;11(10)

    Google Scholar 

  73. Walsh BK, Crotwell DN, Restrepo RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care. 2011;56(4):503–9.

    Article  PubMed  Google Scholar 

  74. Kerslake I, Kelly F. Uses of capnography in the critical care unit. BJA Education. 2017;17(5):178–83.

    Article  Google Scholar 

  75. McSwain SD, Hamel DS. End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respir Care. 2010;55(3):288–93.

    PubMed  Google Scholar 

  76. Nassar BS, Schmidt GA. Capnography during critical illness. Chest. 2016;149(2):576–85.

    Article  PubMed  Google Scholar 

  77. Levine RL, Wayne MA, Miller CC. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. N Engl J Med. 1997;337(5):301–6.

    Article  CAS  PubMed  Google Scholar 

  78. Theerawit P, Sutherasan Y, Ball L, Pelosi P. Respiratory monitoring in adult intensive care unit. Expert Rev Resp Med. 2017;11(6):453–68.

    Article  CAS  Google Scholar 

  79. Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg. 2007;105(6):S48–52.

    Article  PubMed  Google Scholar 

  80. Chitilian HK, David, & Melo M. Respiratory monitoring. In: Miller’s anesthesia. 2014. p. 1541–1579.

    Google Scholar 

  81. Restrepo RD, Hirst KR, Wittnebel L, Wettstein R. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Respir Care. 2012;57(11):1955–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, KM., Zhang, L., Sun, XM., Duan, YQ. (2021). Gas Exchange. In: Zhou, JX., Chen, GQ., Li, HL., Zhang, L. (eds) Respiratory Monitoring in Mechanical Ventilation. Springer, Singapore. https://doi.org/10.1007/978-981-15-9770-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9770-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9769-5

  • Online ISBN: 978-981-15-9770-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics