Skip to main content

Unravelling Mosquito Species Complex Through DNA Barcodes: Complementing Morphological Identification for Accurate Discrimination

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

Mosquitoes are the most recognizable insects distributed throughout the globe including tropical and sub-tropical zones. Accurate and precise mosquito species identification is crucial in many prospects including developing species-specific vector control strategies. Mosquito vectors transmit various disease causative pathogens, our studies about them not merely desire to a complete taxonomic survey of their bio-fauna but also their consequences on human public health. Except for a few siblings or closely related species, mosquito taxonomy based on Linnaean classification has stagnated for more than a century at the stage of recognizing and naming different species. The Linnaean classification of mosquito species is certainly limited since it does not consider phenotypic plasticity, genetic variation of individuals including the morphological complexity, e.g. the occurrence of cryptic taxa or keys only developed for a certain gender or life stages. In recent times, the lack of experienced taxonomists demands the shifting of identification methods from Linnaeus to DNA-based approach such as DNA barcodes which are considered as a moot point in identifying mosquito vectors at their any life stages. At present, the genomic as well as mitochondrial genes are extensively utilized in the phylogenetic analysis of mosquito species. Moreover, the utility of a single even a partial mitochondrial DNA (mtDNA) sequence such as cytochrome oxidase I (COI/COX1) gene can be considered as the initial point for categorizing mosquito biodiversity. The mitochondrial genome appears to be highly suited for barcoding as it lacks introns and its maternal inheritance property is also beneficial for barcoding studies. Additionally, due to more conserved regions within species, the COI gene creates strong phylogenetic signals for accurate species identification. Often more than one marker such as mitochondrial along with nuclear genes is also used for species discrimination. However, DNA barcoding is not an end but it will boost the rate of species identification and it also solves the morphological ambiguity arises within species complex and also helps in discriminating the exotic species from endemic mosquito species. The unique contribution of DNA barcoding to mosquito taxonomy and systematics is a compressed timeline for the exploration of its diversity. Moreover, the molecular data are also widely used for producing molecular phylogenies such as phylogenetic, phylogeographic, population genetics and species identification studies. Phylogeography and genetic variation within the species provide knowledge about the origin and migration of the species which further contribute to vector surveillance and vector control strategy. Phylogenetic trees are also utilized to analyse gene duplication, estimating rates of diversification, polymorphism, recombination, population dynamics and inferring organismal phylogenies by combining it with other data sources. This chapter confers about problems associated with mosquito species complex and the implementation of DNA barcoding in their identification as well as the management process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hussaini MT, Muhammed Ali AK, Al- Rubae HM (2013) PCR based identification of Culex pipiens complex (Diptera: Culicidae) collected in Al-Najaf governorate. Mag Al-Kufa Univ J Biol 5:177–186

    Google Scholar 

  • Ashfaq M, Hebert PD, Mirza JH, Khan AM, Zafar Y, Mirza MS (2014) Analyzing mosquito (Diptera: Culicidae) diversity in Pakistan by DNA barcoding. PLoS One 9:e97268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azari-Hamidian S, Linton YM, Abai MR et al (2010) Mosquito (Diptera: Culicidae) fauna of the Iranian islands in the Persian Gulf. J Nat History 44:913–925

    Article  Google Scholar 

  • Baimai V (1969) Karyotype variation in Drosophila birchii. Chromosoma 27:381–394

    Article  CAS  PubMed  Google Scholar 

  • Baimai V (1988) Population cytogenetics of the malaria vector Anopheles leucosphyrus group. Southeast Asian J Trop Med Pub Hlth 19:668–680

    Google Scholar 

  • Batovska J, Blacket MJ, Brown K, Lynch SE (2016) Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol Evol. https://doi.org/10.1002/ece3.2095

  • Beebe NW, Cooper RD, Morrison DA, Ellis JT (2000) A phylogenetic study of the Anopheles punctulatus group of malaria vectors comparing rDNA sequence alignments derived from the mitochondrial and nuclear small ribosomal subunits. Mol Phylogenet Evol 17(3):430–436. https://doi.org/10.1006/mpev.2000.085

    Article  CAS  PubMed  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76:1967–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan A, Chiang L, Hapuarachchi HC, Tan C, Pang S, Lee R et al (2014) DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit Vectors 7:569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V (1987) A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg 37:37–41

    Article  CAS  PubMed  Google Scholar 

  • Coluzzi M, Sabatini A (1968) Cytogenetic observations on species C of the Anopheles gambiae complex. Parassitilogia 10:156–164

    Google Scholar 

  • Coluzzi M, Sabatini A, della Torre A, Di deco MA, Petrarca V, (2002) A Polytene chromosome analysis of the Anopheles gambiae species complex. Science 298:1415–1418

    Article  CAS  PubMed  Google Scholar 

  • Cook S, Diallo M, Sall AA, Cooper A, Holmes EC (2005) Mitochondrial markers for molecular identification of Aedes mosquitoes (Diptera: Culicidae) involved in transmission of arboviral disease in West Africa. J Med Entomol 42(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Cywinska A, Hunter FF, Hebert PDN (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20:413–424

    Article  CAS  PubMed  Google Scholar 

  • Daravath SS, Siddaiah M, ReddyaNaik B (2015) Molecular characterization and phylogenetic analysis of Culex quinquefasciatus by DNA barcoding. Adv Entomol 3:118–124. https://doi.org/10.4236/ae.2015.33014

    Article  Google Scholar 

  • Delgado JZ, Castaño JC, Hoyos-López R (2015) DNA barcode sequences used to identify Aedes (Stegomyia) albopictus (Diptera: Culicidae) in La Tebaida (Quindío, Colombia). Revista Colombiana de Entomología 41(2):212–217

    Google Scholar 

  • Djadid ND, Barjesteh H, Raeisi A, Hassanzahi A, Zakeri S (2006) Identification, sequence analysis, and comparative study on GSTe2 insecticide resistance gene in three main world malaria vectors: Anopheles stephensi, Anopheles culicifacies and Anopheles fluviatilis. J Med Entomol 43(2006):1171–1177

    Google Scholar 

  • Engdahl E, Larsson P, Slund JN, Bravo M, Ander ME, Lundstrom JO, Ahlm C, Bucht G (2014) Identification of Swedish mosquitoes based on molecular barcoding of the COI gene and SNP analysis. Mol Ecol Resour 14:478–488

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Shi WQ, Zhang Y (2017) Molecular phylogeny of Anopheles hyrcanus group members based on ITS2 rDNA. Parasites Vect 10:417. https://doi.org/10.1186/s13071-017-2351-x

    Article  CAS  Google Scholar 

  • Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick MA (2011) “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11:1577–1585. https://doi.org/10.1016/j.meegid.2011.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Favia G, Dimopoulos G, Louis C (1994a) Analysis of the Anopheles gambiae genome using RAPD markers. Insect Molecular Biology 3(3):149–157

    Article  CAS  PubMed  Google Scholar 

  • Favia G, Dimopoulos G, Torre AD et al (1994b) Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae. Proc. Natl Acad. Sci. USA 91(22):10315–10319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley DH, Wilkerson RC, Cooper RD, Volovsek ME, Bryan JH (2007) A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: The most species rich anopheline complex. Mol Phylogenet Evol 43:283–297

    Article  CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Foster RG, Peirson SN, Wulff K, Winnebeck E, Vetter C, Roenneberg T (2013) Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci 119:325–346. https://doi.org/10.1016/B978-0-12-396971-2.00011-7

    Article  PubMed  Google Scholar 

  • Garros C, Koekemoer LL, Cortzee M, Coosemans M, Manguin S (2004a) A single multiplex assay to identify major malaria vectors with the African Anopheles funestus and the Oriental An. minimus groups. Am J Trop Med Hygiene 70(6):583–590

    Article  CAS  Google Scholar 

  • Garros C, Koekemoer LL, Kamau L, Awolola TS, Van Bortel W, Coetzee M, Coosemans M, Manguin S (2004b) Restriction fragment length polymorphism method for the identification of major African and Asian malaria vectors within the Anopheles funestus and An. minimus groups. Am J Trop Med Hygiene 70:260–265

    Google Scholar 

  • Gonzalez R, Carrejo N, Wilkerson RC et al (2010) Confirmation of Anopheles (Anopheles) calderoni Wilkerson, 1991 (Diptera: Culicidae) in Colombia and Ecuador through molecular and morphological correlation with topotypic material. Memorias do InstitutoOswaldo Cruz 105:1001–1009

    Article  Google Scholar 

  • Guany F, Alten B, Simsek F, Aldemir A, Linton Y (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Trop 143:112–120

    Article  Google Scholar 

  • Hackett BJ, Gimnig J, Guelbeogo W, Costantini C, Koekemoer LL, Coetzee M, Collins FH, Besansky NJ (2000) Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate Anopheles funestus and An. rivulorum, and uncover a cryptic taxon. Insect Mol Biol 9:369–374

    Article  CAS  PubMed  Google Scholar 

  • Hasan AUS, Suguri SM, Ahmed C, Fujimoto M, Harada SM, Rahman et al (2009) Molecular phylogeography of Culex quinquefasciatus mosquitoes in central Bangladesh. Acta Tropica 112:106–114

    Article  CAS  PubMed  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971. https://doi.org/10.1073/pnas.0510466103

    Article  PubMed  PubMed Central  Google Scholar 

  • Harbach RE (2016) Mosquito Taxonomic Inventory. Accessible at http://mosquito-taxonomic-inventory.info

  • Hebert PD, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc Royal Soc Lond Series B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hemmerter S, Šlapeta J, Beebe NW (2009) Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Mol Phylogenet Evol 50:317–325

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard J (2003b) Barcoding animal life: Cytochrome c oxidase subunit 1 divergence, among closely related species. Proc R Soc Lond B (Suppl) 270:S962S99

    Google Scholar 

  • Jiang F, Jin Q, Liang L, Zhang AB, Li ZH (2014) Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp. Mol Ecol Resour 14:1114–1128

    Article  CAS  PubMed  Google Scholar 

  • Jinbo U, Kato T, Ito M (2011) Current progress in DNA barcoding and future implications for entomology. Entomological Science 14:107–124

    Article  Google Scholar 

  • Kambhampati S, Black WC, Rai KS (1992) Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): Techniques, statistical analysis, and applications. Journal of Medical Entomology 29(6):939–945

    Article  CAS  PubMed  Google Scholar 

  • Karthika P, Vadivalagan C, Thirumurugan D, Kumar RR, Murugan K, Canale A, Benelli G (2018) DNA barcoding of five Japanese encephalitis mosquito vectors (Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui). Acta Trop 183:84–91. https://doi.org/10.1016/j.actatropica.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  • Kipling WW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Article  Google Scholar 

  • Krzywinski J, Wilkerson RC, Besansky NJ (2001) Evolution of mitochondrial and ribosomal gene sequences in Anophelinae (Diptera: Culicidae): implications for phylogeny reconstruction. Mol Phylogenet Evol 18(3):479–487. https://doi.org/10.1006/mpev.2000.0894

    Article  CAS  PubMed  Google Scholar 

  • Kumar NP, Rajaval AR, Natarajan R, Jambulingam P (2007) DNA barcode can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entmol 44(1):1–7

    Article  CAS  Google Scholar 

  • Laboudi M, Faraj C, Sadak A, Harrat Z, Boubidi SC, Harbach RE, Aouad RE, Linton YM (2011) DNA barcodes confirm the presence of a single member of the Anopheles maculipennis group in Morocco and Algeria: An. sicaulti is conspecific with An. labranchiae. Acta Trop 118:6–13. https://doi.org/10.1016/j.actatropica.2010.12.006

    Article  PubMed  Google Scholar 

  • Laurito M, de Oliveira TMP, Almir WR, Sallum MAM (2013) COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: A case study using samples from Argentina and Brazil. Mem Inst Oswaldo Cruz 108(Suppl 1):110–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Seifert SN, Nieman CC, McAbee RD, Goodell P, Fryxell RT et al (2012) High degree of single nucleotide polymorphisms in California Culex pipiens (Diptera: Culicidae) sensu lato. J Med Entomol 49:299–306

    Google Scholar 

  • Ling FY, Wang W (1997) A new karyotype of Drosophila albomicans. Acta Genet Sinica 24:496–500

    CAS  Google Scholar 

  • Lyman DF, Monteiro FA, Escalante AS, Cordon-Rosales C, Wesson DM, Dujardin J, Beard CB (1999) Mitochondrial DNA sequence variation among Triatomine vectors of Chargas’ disease. Am J Trop Med Hyg 60(3):377–386. https://doi.org/10.4269/ajtmh.1999.60.377

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Li S, Xu J (2006) Molecular identification and phylogeny of the Maculatus group of Anopheles mosquitoes (Diptera: Culicidae) based on nuclear and mitochondrial DNA sequences. Acta Trop 99:272–280

    Article  CAS  PubMed  Google Scholar 

  • Marrelli MT, Sallum MA, Marinotti O (2006) The second internal transcribed spacer of nuclear ribosomal DNA as a tool for Latin American anopheline taxonomy- a critical review. Mem Inst Oswal do Cruz 101:817–832

    Article  CAS  Google Scholar 

  • Manonmani A, Nanda N, Jambulingam P, Sahu S, Vijayakumar T, Vani JR et al (2003) Comparison of polymerase chain reaction assay and cytotaxonomy for identification of sibling species of Anopheles fluviatilis (Diptera: Culicidae). Bull Entomol Res 93:169–171

    Article  CAS  PubMed  Google Scholar 

  • Meier R, Shiyang K, Vaidya G, Ng PK (2006) DNA barcoding and taxonomy in Diptera: 696 a tale of high intraspecific variability and low identification success. Syst Biol 55(5):715–728

    Article  PubMed  Google Scholar 

  • Miller DD, Stone LE (1962) Reinvestigation of karyotype in Drosophila affinis Sturtevant and related species. J Hered 53:12–24

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, Wei H, Aziz AT, Alsalhi MS, Devanesan S, Nicoletti M, Paramasivan R, Parajulee MN, Benelli G (2016) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res 115:107–121. https://doi.org/10.1007/s00436-015-4726-2

    Article  PubMed  Google Scholar 

  • Naddaf SR, Oshaghi MA, Vatandoost H (2012) Confirmation of two sibling species among Anopheles fluviatilis mosquitoes in south and southeastern Iran by analysis of cytochrome oxidase I gene. J Arthropod Borne Dis 6(2):144–150

    Google Scholar 

  • Norris DE (2002) Genetic markers for study of the anopheline vectors of human malaria. Int J Parasitol 32:1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Paramasivan R, Dhananjeyan KJ, Selvaraj Pandian R (2013) A preliminary report on DNA barcoding and phylogenetic relationships of certain public health important mosquito species recorded in rural areas of south India. J Vector Borne Dis 50:144–146

    CAS  PubMed  Google Scholar 

  • Pennisi E (2003) Modernizing the tree of life. Science 300:1692–1697

    Article  PubMed  Google Scholar 

  • Porter CH, Collins FH (1996) Phylogeny of Neartic members of the Anopheles maculipennis species group derived from the D2 variable region of 28S ribosomal RNA. Mol Phylogenet Evol 6:178–188. https://doi.org/10.1006/mpev.1996.0070

    Article  CAS  PubMed  Google Scholar 

  • Pramual P, Wongpakam K, Adler PH (2011) Cryptic biodiversity and phylogenetic relationships revealed by DNA barcoding of oriental black flies in the subgenus Gomphostilbia (Diptera: Simuliidae). Genome 54:1–9

    Article  CAS  PubMed  Google Scholar 

  • Puslednik L, Russell RC, Ballard JWO (2012) Phylogeography of the medically important mosquito Aedes (Ochlerotatus) vigilax (Diptera: Culicidae) in Australasia. J Biogeogr 39:1333–1346

    Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) Bold: the barcode of life data system. Mol Ecol Notes 7:355–364. http://www.barcodinglife.org

  • Rosero D, Gutiérrez L, Cienfuegos A, Jaramillo L, Correa M (2010) Optimization of a DNA extraction procedure for anopheline mosquitoes. Revista Colombiana de Entomología 36(2):260–263

    CAS  Google Scholar 

  • Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Hered 97:581–594

    Article  CAS  PubMed  Google Scholar 

  • Ruiling Z, Peien L, Xuejun W, Zhong Z (2017) Molecular analysis and genetic diversity of Aedes albopictus (Diptera, Culicidae) from China. Mitochondrial DNA Part A. https://doi.org/10.1080/24701394.2017.1325481

  • Ruiz F, Linton YM, Ponsonby DJ et al (2010) Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami causey (Diptera: Culicidae) in the Colombian Amazon. Memorias do Instituto Oswaldo Cruz 105:899–903

    Article  PubMed  Google Scholar 

  • Ruiz-Lopez F, Wilkerson RC, Conn JE, McKeon SN, Levin DM, Quiñones ML, Póvoa MM, Linton YM (2012) DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors. Parasites Vect 5:44. http://www.parasitesandvectors.com/content/5/1/44

    Article  CAS  Google Scholar 

  • Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    Article  CAS  PubMed  Google Scholar 

  • Shouche SY, Milind SP (2000) Sequence analysis of mitochondrial 16s ribosomal RNA gene fragment from seven mosquito species. J BioSci 25(4):361–366

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Singh OP, Chandra D, Nanda N, Raghavendra K, Sunil S, Sharma SK, Dua VK, Subbarao SK (2004) Differentiation of members of the Anopheles fluviatilis species complex by an Allelespecific polymerase chain reaction based on 28s ribosomal DNA sequences. Am J Trop Med Hyg 70(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Sirivanakarn S (1977) A revision of the subgenus Lophoceraomyia of the genus Culex in the oriental region (Diptera: Culicidae). Contrib Am Entomol Inst (Ann Arbor) 13:1–245

    Google Scholar 

  • Smith JL, Fonseca DM (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70:339–345

    Google Scholar 

  • Stahls G, Vujic A, Perez-Banon C et al (2009) COI barcodes for identification of Merodon hoverflies (Diptera, Syrphidae) of Lesvos Island, Greece. Mol Ecol Resour 9:1431–1438

    Article  CAS  PubMed  Google Scholar 

  • Torres-Gutierrez C, Bergo ES, Emerson KJ, de Oliveira TMP, Greni S, Sallum MAM (2016) Mitochondrial COI gene as a tool in the taxonomy of mosquitoes Culex subgenus Melanononion. Acta Trop 164:137–149

    Article  PubMed  Google Scholar 

  • Tyagi V, Sharma AK, Yadav R, Sukumaran D, Agrawal OP, Veer V (2015) Cytotaxonomic examination for identification of Anopheles culicifacies sibling species in Central India. J Mosquito Res 5(20):1–7

    Google Scholar 

  • Vadivalagan C, Karthika P, Murugan K, Panneerselvam C, Serrone PD, Benelli G (2017) Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop 169:43–50. https://doi.org/10.1016/j.actatropica.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  • Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D, Dekoninck W, Backeljau T, Coosemans M, Van Bortel W (2014) Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12318

  • Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, Zhang Y, Liu M, Zheng Z, Zhang H, Zhu X, Wu Z, Zhao T (2012) Identifying the main mosquito species in China based on DNA barcoding. PLoS One 7:e4705

    Google Scholar 

  • Wang G, Li C, Guo X, Xing D, Dong Y, Zhao T (2014) Molecular phylogenetic analysis of the subgenera Anopheles and Celia (Diptera: Culicidae) based on nuclear ribosomal sequences. Afr Entomol 22(3):660–669. https://doi.org/10.4001/003.022.0323

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeraratne TC, Surendran SN, Reimer LJ, Wondji CS, Perera MDB, Walton C, Parakrama Karunaratne SHP (2017) Molecular characterization of Anopheline (Diptera: Culicidae) mosquitoes from eight geographical locations of Sri Lanka. Malar J. 16:234. https://doi.org/10.1186/s12936-017-1876-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeraratne TC, Surendran SN, Walton C, Parakrama Karunaratne SHP (2018) Genetic diversity and population structure of malaria vector mosquitoes Anopheles subpictus, Anopheles peditaeniatus and Anopheles vagus in five districts of Sri Lanka. Malar J 17:271. https://doi.org/10.1186/s12936-018-2419-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkerson RC, Reinert JF, Li C (2004) Ribosomal DNA ITS2 sequences differentiate six species in the Anopheles crucians complex (Diptera: Culicidae). J Med Entomol 41:392–401

    Article  CAS  PubMed  Google Scholar 

  • Wilson FD, Wheeler MR, Harget M, Kambysellis M (1969) Cytogenetic relations in the Drosophila nasuta subgroup of the immigrans group of species. Univ Tex Publs 6918:207–253

    Google Scholar 

  • Witt JD, Threloff DL, Hebert PD (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: Implications for desert spring conservation. Mol Ecol 15:3073–3082

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, D., Barik, T.K. (2020). Unravelling Mosquito Species Complex Through DNA Barcodes: Complementing Morphological Identification for Accurate Discrimination. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_1

Download citation

Publish with us

Policies and ethics