Skip to main content

How to Perform FMO Calculation in Drug Discovery

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method

Abstract

In order to apply the fragment molecular orbital (FMO) method to practical drug discovery research, what procedure should be used? This chapter summarizes the preliminary knowledge necessary for applying the FMO method to the field of drug discovery. First, as a pretreatment of calculation, preparation of structure, fragmentation, and selection of the theoretical method are explained. Then, as to how to evaluate the binding properties of ligand from the obtained results of the FMO calculation, the evaluation method using binding free energy, interaction energy, and its energy components will be explained. Further, various physical quantities obtained from the FMO calculation such as charge distribution, electrostatic potential, and electron density distribution are introduced. Then, how to interpret these values will be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heifetz A (2020) Quantum mechanics in drug discovery. Springer, US, New York, NY

    Book  Google Scholar 

  2. Fedorov DG, Kitaura K (2009) The fragment molecular orbital method, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Fedorov DG, Nagata T, Kitaura K (2012) Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 14:7562. https://doi.org/10.1039/c2cp23784a

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka S, Mochizuki Y, Komeiji Y et al (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344. https://doi.org/10.1039/c4cp00316k

    Article  CAS  PubMed  Google Scholar 

  5. Nakano T, Kaminuma T, Sato T et al (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480. https://doi.org/10.1016/S0009-2614(01)01416-6

    Article  CAS  Google Scholar 

  6. Fedorov DG, Kitaura K (2006) The three-body fragment molecular orbital method for accurate calculations of large systems. Chem Phys Lett 433:182–187. https://doi.org/10.1016/j.cplett.2006.10.052

    Article  CAS  Google Scholar 

  7. Pruitt SR, Nakata H, Nagata T et al (2016) Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method. J Chem Theory Comput 12:1423–1435. https://doi.org/10.1021/acs.jctc.5b01208

    Article  CAS  PubMed  Google Scholar 

  8. Nakano T, Mochizuki Y, Yamashita K et al (2012) Development of the four-body corrected fragment molecular orbital (FMO4) method. Chem Phys Lett 523:128–133. https://doi.org/10.1016/j.cplett.2011.12.004

    Article  CAS  Google Scholar 

  9. Watanabe C, Fukuzawa K, Okiyama Y et al (2013) Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. J Mol Graph Model 41:31–42. https://doi.org/10.1016/j.jmgm.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237. https://doi.org/10.1002/jcc.20496

    Article  CAS  PubMed  Google Scholar 

  11. BioStation Viewer. The program is available at: https://fmodd.jp/biostationviewer-dl/

  12. Watanabe C, Watanabe H, Okiyama Y et al (2019) Development of an automated fragment molecular orbital (FMO) calculation protocol toward construction of quantum mechanical calculation database for large biomolecules. Chem-Bio Inform J 19:5–18. https://doi.org/10.1273/cbij.19.5

    Article  CAS  Google Scholar 

  13. Molecular Operating Environment (MOE). Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

    Google Scholar 

  14. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheng Y, Watanabe H, Maruyama K et al (2018) Towards good correlation between fragment molecular orbital interaction energies and experimental IC50 for ligand binding: a case study of p38 MAP kinase. Comput Struct Biotechnol J 16:421–434. https://doi.org/10.1016/j.csbj.2018.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tokuda K, Watanabe C, Okiyama Y et al (2016) Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method. J Mol Graph Model 69:144–153. https://doi.org/10.1016/j.jmgm.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  17. Fukuzawa K, Kitaura K, Uebayasi M et al (2005) Ab initio quantum mechanical study of the binding energies of human estrogen receptor α with its ligands: an application of fragment molecular orbital method. J Comput Chem 26:1–10. https://doi.org/10.1002/jcc.20130

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe C, Watanabe H, Fukuzawa K et al (2017) Theoretical analysis of activity cliffs among Benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics Poisson–Boltzmann surface area (FMO+MM-PBSA) approach. J Chem Inf Model 57:2996–3010. https://doi.org/10.1021/acs.jcim.7b00110

    Article  CAS  PubMed  Google Scholar 

  19. Tsukamoto T, Mochizuki Y, Watanabe N et al (2012) Partial geometry optimization with FMO-MP2 gradient: application to TrpCage. Chem Phys Lett 535:157–162. https://doi.org/10.1016/j.cplett.2012.03.046

    Article  CAS  Google Scholar 

  20. Fedorov DG, Alexeev Y, Kitaura K (2011) Geometry optimization of the active site of a large system with the fragment molecular orbital method. J Phys Chem Lett 2:282–288. https://doi.org/10.1021/jz1016894

    Article  CAS  Google Scholar 

  21. Yoshioka A, Takematsu K, Kurisaki I et al (2011) Antigen–antibody interactions of influenza virus hemagglutinin revealed by the fragment molecular orbital calculation. Theor Chem Acc 130:1197–1202. https://doi.org/10.1007/s00214-011-1048-z

    Article  CAS  Google Scholar 

  22. FMOe. The program is available at: https://github.com/drugdesign/FMOe

  23. Akinaga Y, Kato K, Nakano T et al (2020) Fragmentation at sp2 carbon atoms in fragment molecular orbital method. J Comput Chem 41:1416–1420. https://doi.org/10.1002/jcc.26190

    Article  CAS  PubMed  Google Scholar 

  24. Fujita T, Fukuzawa K, Mochizuki Y et al (2009) Accuracy of fragmentation in ab initio calculations of hydrated sodium cation. Chem Phys Lett 478:295–300. https://doi.org/10.1016/j.cplett.2009.07.060

    Article  CAS  Google Scholar 

  25. Mochizuki Y, Koikegami S, Nakano T et al (2004) Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett 396:473–479. https://doi.org/10.1016/j.cplett.2004.08.082

    Article  CAS  Google Scholar 

  26. Mochizuki Y, Nakano T, Koikegami S et al (2004) A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme. Theor Chem Acc 112:442–452. https://doi.org/10.1007/s00214-004-0602-3

    Article  CAS  Google Scholar 

  27. Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601. https://doi.org/10.1002/jcc.21265

    Article  CAS  PubMed  Google Scholar 

  28. Okiyama Y, Nakano T, Yamashita K et al (2010) Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach. Chem Phys Lett 490:84–89. https://doi.org/10.1016/j.cplett.2010.03.001

    Article  CAS  Google Scholar 

  29. Ishikawa T, Mochizuki Y, Nakano T et al (2006) Fragment molecular orbital calculations on large scale systems containing heavy metal atom. Chem Phys Lett 427:159–165. https://doi.org/10.1016/j.cplett.2006.06.103

    Article  CAS  Google Scholar 

  30. Okiyama Y, Watanabe C, Fukuzawa K et al (2019) Fragment molecular orbital calculations with implicit solvent based on the Poisson–Boltzmann equation: II. Protein and its ligand-binding system studies. J Phys Chem B 123:957–973. https://doi.org/10.1021/acs.jpcb.8b09326

    Article  CAS  PubMed  Google Scholar 

  31. Okimoto N, Otsuka T, Hirano Y, Taiji M (2018) Use of the multilayer fragment molecular orbital method to predict the rank order of protein-ligand binding affinities: a case study using Tankyrase 2 inhibitors. ACS Omega 3:4475–4485. https://doi.org/10.1021/acsomega.8b00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  33. Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90:509–521. https://doi.org/10.1021/cr00101a005

    Article  CAS  Google Scholar 

  34. Sharp KA, Honig B (1990) Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation. J Phys Chem 94:7684–7692. https://doi.org/10.1021/j100382a068

    Article  CAS  Google Scholar 

  35. Fedorov DG, Kitaura K, Li H et al (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). J Comput Chem 27:976–985. https://doi.org/10.1002/jcc.20406

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe H, Okiyama Y, Nakano T, Tanaka S (2010) Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson–Boltzmann equation. Chem Phys Lett 500:116–119. https://doi.org/10.1016/j.cplett.2010.10.017

    Article  CAS  Google Scholar 

  37. Okiyama Y, Nakano T, Watanabe C et al (2018) Fragment molecular orbital calculations with implicit solvent based on the Poisson–Boltzmann equation: implementation and DNA study. J Phys Chem B 122:4457–4471. https://doi.org/10.1021/acs.jpcb.8b01172

    Article  CAS  PubMed  Google Scholar 

  38. Fedorov DG (2018) Analysis of solute–solvent interactions using the solvation model density combined with the fragment molecular orbital method. Chem Phys Lett 702:111–116. https://doi.org/10.1016/j.cplett.2018.05.002

    Article  CAS  Google Scholar 

  39. Okiyama Y, Fukuzawa K, Komeiji Y, Tanaka S (2020) Taking water into account with the fragment molecular orbital method. In: Heifetz A (ed) Quantum mechanics in drug discovery. Methods in molecular biology, vol 2114. Humana, New York, NY, pp 105–122

    Google Scholar 

  40. Fukuzawa K, Mochizuki Y, Tanaka S et al (2006) Molecular Interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. J Phys Chem B 110:24276–24276. https://doi.org/10.1021/jp065705n

    Article  CAS  Google Scholar 

  41. Iwasaki S, Iwasaki W, Takahashi M et al (2019) The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell 73:738–748.e9. https://doi.org/10.1016/j.molcel.2018.11.026

  42. Fukuzawa K, Kurisaki I, Watanabe C et al (2015) Explicit solvation modulates intra- and inter-molecular interactions within DNA: electronic aspects revealed by the ab initio fragment molecular orbital (FMO) method. Comput Theor Chem 1054:29–37. https://doi.org/10.1016/j.comptc.2014.11.020

    Article  CAS  Google Scholar 

  43. Fukuzawa K, Komeiji Y, Mochizuki Y et al (2006) Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA: ab initio fragment molecular orbital study. J Comput Chem 27:948–960. https://doi.org/10.1002/jcc.20399

    Article  CAS  PubMed  Google Scholar 

  44. Fukuzawa K, Komeiji Y, Mochizuki Y et al (2007) Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA: ab initio fragment molecular orbital study. J Comput Chem 28:2237–2239. https://doi.org/10.1002/jcc.20803

    Article  CAS  Google Scholar 

  45. Komeiji Y, Okiyama Y, Mochizuki Y, Fukuzawa K (2017) Explicit solvation of a single-stranded DNA, a binding protein, and their complex: a suitable protocol for fragment molecular orbital calculation. Chem-Bio Inform J 17:72–84. https://doi.org/10.1273/cbij.17.72

    Article  Google Scholar 

  46. Kurisaki I, Fukuzawa K, Komeiji Y et al (2007) Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method. Biophys Chem 130:1–9. https://doi.org/10.1016/j.bpc.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  47. Amari S, Aizawa M, Zhang J et al (2006) VISCANA: visualized cluster analysis of protein−ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening. J Chem Inf Model 46:221–230. https://doi.org/10.1021/ci050262q

    Article  CAS  PubMed  Google Scholar 

  48. Ishikawa T, Mochizuki Y, Amari S et al (2007) Fragment interaction analysis based on local MP2. Theor Chem Acc 118:937–945. https://doi.org/10.1007/s00214-007-0374-7

    Article  CAS  Google Scholar 

  49. Hitaoka S, Harada M, Yoshida T, Chuman H (2010) Correlation analyses on binding affinity of sialic acid analogues with influenza virus neuraminidase-1 using ab initio MO calculations on their complex structures. J Chem Inf Model 50:1796–1805. https://doi.org/10.1021/ci100225b

    Article  CAS  PubMed  Google Scholar 

  50. Hitaoka S, Matoba H, Harada M et al (2011) Correlation analyses on binding affinity of sialic acid analogues and anti-influenza drugs with human neuraminidase using ab initio MO calculations on their complex structures–LERE-QSAR analysis (IV). J Chem Inf Model 51:2706–2716. https://doi.org/10.1021/ci2002395

    Article  CAS  PubMed  Google Scholar 

  51. von Itzstein M, Wu W-Y, Kok GB et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423. https://doi.org/10.1038/363418a0

    Article  Google Scholar 

  52. Mochizuki Y, Fukuzawa K, Kato A et al (2005) A configuration analysis for fragment interaction. Chem Phys Lett 410:247–253. https://doi.org/10.1016/j.cplett.2005.05.079

    Article  CAS  Google Scholar 

  53. Ishikawa T, Mochizuki Y, Amari S et al (2008) An application of fragment interaction analysis based on local MP2. Chem Phys Lett 463:189–194. https://doi.org/10.1016/j.cplett.2008.08.022

    Article  CAS  Google Scholar 

  54. Nakano T, Kaminuma T, Sato T et al (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618. https://doi.org/10.1016/S0009-2614(00)00070-1

    Article  CAS  Google Scholar 

  55. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840. https://doi.org/10.1063/1.1740588

    Article  CAS  Google Scholar 

  56. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  57. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  58. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145. https://doi.org/10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  59. Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439. https://doi.org/10.1002/jcc.540110404

    Article  CAS  Google Scholar 

  60. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. https://doi.org/10.1021/j100142a004

    Article  CAS  Google Scholar 

  61. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373. https://doi.org/10.1002/jcc.540110311

    Article  CAS  Google Scholar 

  62. Bachrach SM (2007) Population analysis and electron densities from quantum mechanics. In: Reviews in computational chemistry, pp 171–228

    Google Scholar 

  63. Fujiwara T, Mochizuki Y, Komeiji Y et al (2010) Fragment molecular orbital-based molecular dynamics (FMO-MD) simulations on hydrated Zn(II) ion. Chem Phys Lett 490:41–45. https://doi.org/10.1016/j.cplett.2010.03.020

    Article  CAS  Google Scholar 

  64. Fedorov DG, Slipchenko LV, Kitaura K (2010) Systematic study of the embedding potential description in the fragment molecular orbital method. J Phys Chem a 114:8742–8753. https://doi.org/10.1021/jp101724p

    Article  CAS  PubMed  Google Scholar 

  65. Okiyama Y, Watanabe H, Fukuzawa K et al (2007) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. Chem Phys Lett 449:329–335. https://doi.org/10.1016/j.cplett.2007.10.066

    Article  CAS  Google Scholar 

  66. Okiyama Y, Watanabe H, Fukuzawa K et al (2009) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations. Chem Phys Lett 467:417–423. https://doi.org/10.1016/j.cplett.2008.11.044

    Article  CAS  Google Scholar 

  67. Chang L, Ishikawa T, Kuwata K, Takada S (2013) Protein-specific force field derived from the fragment molecular orbital method can improve protein–ligand binding interactions. J Comput Chem 34:1251–1257. https://doi.org/10.1002/jcc.23250

    Article  CAS  PubMed  Google Scholar 

  68. Watanabe C, Fukuzawa K, Tanaka S, Aida-Hyugaji S (2014) Charge clamps of lysines and hydrogen bonds play key roles in the mechanism to fix helix 12 in the agonist and antagonist positions of estrogen receptor α: Intramolecular interactions studied by the ab initio fragment molecular orbital method. J Phys Chem B 118:4993–5008. https://doi.org/10.1021/jp411627y

    Article  CAS  PubMed  Google Scholar 

  69. Watanabe T, Inadomi Y, Fukuzawa K et al (2007) DNA and estrogen receptor interaction revealed by fragment molecular orbital calculations. J Phys Chem B 111:9621–9627. https://doi.org/10.1021/jp071710v

    Article  CAS  PubMed  Google Scholar 

  70. Fedorov DG, Brekhov A, Mironov V, Alexeev Y (2019) Molecular electrostatic potential and electron density of large systems in solution computed with the fragment molecular orbital method. J Phys Chem a 123:6281–6290. https://doi.org/10.1021/acs.jpca.9b04936

    Article  CAS  PubMed  Google Scholar 

  71. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA (2016) Gaussian 16, Rev. C.01. Gaussian, Inc.

    Google Scholar 

  72. Fedorov DG, Ishida T, Uebayasi M, Kitaura K (2007) The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. J Phys Chem a 111:2722–2732. https://doi.org/10.1021/jp0671042

    Article  CAS  PubMed  Google Scholar 

  73. Ishikawa T, Yamamoto N, Kuwata K (2010) Partial energy gradient based on the fragment molecular orbital method: application to geometry optimization. Chem Phys Lett 500:149–154. https://doi.org/10.1016/j.cplett.2010.09.071

    Article  CAS  Google Scholar 

  74. Nagata T, Fedorov DG, Sawada T et al (2011) A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. J Chem Phys 134:034110. https://doi.org/10.1063/1.3517110

  75. Fedorov DG, Asada N, Nakanishi I, Kitaura K (2014) The use of many-body expansions and geometry optimizations in fragment-based methods. Acc Chem Res 47:2846–2856. https://doi.org/10.1021/ar500224r

    Article  CAS  PubMed  Google Scholar 

  76. Nakata H, Fedorov DG (2016) Efficient geometry optimization of large molecular systems in solution using the fragment molecular orbital method. J Phys Chem a 120:9794–9804. https://doi.org/10.1021/acs.jpca.6b09743

    Article  CAS  PubMed  Google Scholar 

  77. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Yuji Mochizuki and Prof. Shigenori Tanaka for ongoing discussions on FMO. A part of this research was done in activities of the FMO drug design consortium (FMODD). PIEDA analysis was carried out by using MIZUHO/BioStation Viewer. This research was partially supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP20am0101113. C.W. acknowledges the JST PRESTO Grant Number JPMJPR18GD, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Fukuzawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukuzawa, K., Watanabe, C., Okiyama, Y., Nakano, T. (2021). How to Perform FMO Calculation in Drug Discovery. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_7

Download citation

Publish with us

Policies and ethics