Skip to main content
Log in

Antigen–antibody interactions of influenza virus hemagglutinin revealed by the fragment molecular orbital calculation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Effective interactions between amino acid residues in antigen–antibody complex of influenza virus hemagglutinin (HA) protein can be evaluated in terms of the inter-fragment interaction energy (IFIE) analysis with the fragment molecular orbital (FMO) method, in which each fragment contains the side chain of corresponding amino acid residue. We have carried out the FMO-MP2 (second-order Moeller–Plesset) calculation for the complex of HA antigen and Fab antibody of influenza virus H3N2 A/Aichi/2/68 and obtained the IFIE values between each amino acid residue in HA and the whole antibody as the sums over the residues contained in the latter. Combining this IFIE data with experimental data for hemadsorption activity of HA mutants, we succeeded in theoretically explaining the mutations in HA observed after the emergence of influenza virus H3N2 A/Aichi/2/68 in an earlier study, except for those of THR83. In the present study, we employ an alternative way of fragment division in the FMO calculation at the carbonyl C site of the peptide bond instead of the Cα site used in the previous work, which provides revised IFIE values consistent with all the historical mutation data in the antigenic region E of HA including the case of THR83 in the present prediction scheme for probable mutations in HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HA:

Hemagglutinin

FMO:

Fragment molecular orbital

IFIE:

Inter-fragment interaction energy

MP2:

Moeller–Plesset second-order perturbation

References

  1. Barbey-Martin C, Gigant B, Bizebard T, Calder LJ, Wharton SA, Skehel JJ, Knossow M (2002) Virol 294:70

    Article  CAS  Google Scholar 

  2. Russell CA et al (2008) Science 320:340

    Article  CAS  Google Scholar 

  3. Takematsu K, Fukuzawa K, Omagari K, Nakajima S, Nakajima K, Mochizuki Y, Nakano T, Watanabe H, Tanaka S (2009) J Phys Chem B 113:4991

    Article  CAS  Google Scholar 

  4. Mochizuki Y, Yamashita K, Murase T, Nakano T, Fukuzawa K, Takematsu K, Watanabe H, Tanaka S (2008) Chem Phys Lett 457:396

    Article  CAS  Google Scholar 

  5. Fleury D, Daniels RS, Skehel JJ, Knossow M, Bizebard T (2000) Struct Funct Gen 40:572

    Article  CAS  Google Scholar 

  6. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701

    Article  CAS  Google Scholar 

  7. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Chem Phys Lett 318:614

    Article  CAS  Google Scholar 

  8. Fukuzawa K, Komeiji Y, Mochizuki Y, Kato A, Nakano T, Tanaka S (2006) J Comput Chem 27:948

    Article  CAS  Google Scholar 

  9. Fukuzawa K, Mochizuki Y, Tanaka S, Kitaura K, Nakano T (2006) J Phys Chem B 110:16102

    Article  CAS  Google Scholar 

  10. Kurisaki I, Fukuzawa K, Komeiji Y, Mochizuki Y, Nakano T, Imada J, Chmielewski A, Rothstein SM, Watanabe H, Tanaka S (2007) Biophys Chem 130:1

    Article  CAS  Google Scholar 

  11. Ito M, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2007) J Phys Chem B 111:3525

    Article  CAS  Google Scholar 

  12. Ito M, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2008) J Phys Chem A 112:1986

    Article  CAS  Google Scholar 

  13. Ito M, Fukuzawa K, Ishikawa T, Mochizuki Y, Nakano T, Tanaka S (2008) J Phys Chem B 112:12081

    Article  CAS  Google Scholar 

  14. Iwata T, Fukuzawa K, Nakajima K, Aida-Hyugaji S, Mochizuki Y, Watanabe H, Tanaka S (2008) Comput Biol Chem 32:198

    Article  CAS  Google Scholar 

  15. Wiley DC, Wilson IA, Skehel JJ (1981) Nature 289:373

    Article  CAS  Google Scholar 

  16. Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M, Wilson IA, Wiley DC (1984) Proc Natl Acad Sci USA 81:1779

    Article  CAS  Google Scholar 

  17. Bizebard T, Mauguen Y, Petek F, Rigolet P, Skehel JJ, Knossow M (1990) J Mol Biol 216:513

    Article  CAS  Google Scholar 

  18. Gigant B, Fleury D, Bizebard T, Skehel JJ, Knossow M (1995) Proteins 23:115

    Article  CAS  Google Scholar 

  19. Nakajima K, Nobusawa E, Tonegawa K, Nakajima S (2003) J Virol 77:10088

    Article  CAS  Google Scholar 

  20. Nakajima K, Nobusawa E, Nagy A, Nakajima S (2005) J Virol 79:6472

    Article  CAS  Google Scholar 

  21. Fedorov DG, Kitaura K (2009) The fragment molecular orbital method. CRC Press, Boca Raton

    Google Scholar 

  22. Halgren TA (1996) J Comput Chem 17:490

    Article  CAS  Google Scholar 

  23. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668

    Article  CAS  Google Scholar 

  24. Watanabe H, Okiyama Y, Nakano T, Tanaka S (2010) Chem Phys Lett 500:116

    Article  CAS  Google Scholar 

  25. Mochizuki Y, Yamashita K, Fukuzawa K, Takematsu K, Watanabe H, Taguchi N, Okiyama Y, Tsuboi M, Nakano T, Tanaka S (2010) Chem Phys Lett 493:346

    Article  CAS  Google Scholar 

  26. Yoshioka A, Fukuzawa K, Mochizuki Y, Yamashita K, Nakano T, Okiyama Y, Nobusawa E, Nakajima K, Tanaka S (2011) J Mol Graph Model 30:110

    Article  CAS  Google Scholar 

  27. Zhou R, Das P, Royyuru AK (2008) J Phys Chem B 112:15813

    Article  CAS  Google Scholar 

  28. Tamura K, Inadomi Y, Nagashima U (2007) Bull Chem Soc Jpn 80:721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the CREST project of Japan Science and Technology Agency (JST) and by the Health and Labour Sciences Research Grants on Emerging and Re-emerging Infectious Diseases (No. H22-Shinko-Ippan-006) from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Tanaka.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshioka, A., Takematsu, K., Kurisaki, I. et al. Antigen–antibody interactions of influenza virus hemagglutinin revealed by the fragment molecular orbital calculation. Theor Chem Acc 130, 1197–1202 (2011). https://doi.org/10.1007/s00214-011-1048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1048-z

Keywords

Navigation