Skip to main content

Advertisement

Log in

Fragment interaction analysis based on local MP2

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have developed a fragment interaction analysis based on local MP2 (FILM) in the context of the fragment molecular orbital (FMO) scheme. The primary purpose of this work is to provide a tool for analyzing inter-fragment interaction associated with dispersion interactions in a large molecule such as protein and DNA. Our implementation of local MP2 (LMP2) is based on the algorithm developed by Pulay and Werner. A potential of FILM was demonstrated using the human immunodeficiency virus type 1 protease (HIV-1 PR) complexed with lopinavir (LPV). The total energy, binding affinity, and inter-fragment interaction energy (IFIE) by the FMO method using LMP2 were compared with those obtained by canonical MP2 and the site-specific information in dispersion interaction was obtained. It turned out that the FILM is a useful tool for analyzing the dispersion interaction between an amino acid residue and a specific site of a ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitaura K, Sawai T, Asada T, Nakano T and Uebayasi M (1999). Chem Phys Lett 312: 319

    Article  CAS  Google Scholar 

  2. Kitaura K, Ikeo E, Asada T, Nakano T and Uebayasi M (1999). Chem Phys Lett 313: 701

    Article  CAS  Google Scholar 

  3. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M and Kitaura K (2000). Chem Phys Lett 318: 614

    Article  CAS  Google Scholar 

  4. Fedorov DG and Kitaura K (2004). Chem Phys Lett 389: 129

    Article  CAS  Google Scholar 

  5. Fedorov DG and Kitaura K (2004). J Chem Phys 120: 6832

    Article  CAS  Google Scholar 

  6. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U and Kitaura K (2004). Theo Chem Acc 112: 442

    Article  CAS  Google Scholar 

  7. Mochizuki Y, Koikegami S, Nakano T, Amari S and Kitaura K (2004). Chem Phys Lett 396: 473

    Article  CAS  Google Scholar 

  8. Fedorov DG and Kitaura K (2004). J Chem Phys 121: 2483

    Article  CAS  Google Scholar 

  9. Fedorov DG and Kitaura K (2005). J Chem Phys 123: 134103

    Article  Google Scholar 

  10. Mochizuki Y, Koikegami S, Amari S, Segawa K, Kitaura K and Nakano T (2005). Chem Phys Lett 406: 283

    Article  CAS  Google Scholar 

  11. Mochizuki Y, Tanaka K, Yamashita K, Ishikawa T, Nakano T, Amari S, Segawa K, Murase T, Tokiwa H, Sakurai M (2007) Theo Chem Acc (in press)

  12. Fedorov DG and Kitaura K (2005). J Chem Phys 112: 054108

    Article  Google Scholar 

  13. Fedorov DG and Kitaura K (2005). J Phys Chem 109: 2638

    CAS  Google Scholar 

  14. Ishikawa T, Mochizuki Y, Nakano T, Amari S, Mori H, Honda H, Fujita T, Tokiwa H, Tanaka S, Komeiji Y, Fukuzawa K, Tanaka K and Miyoshi E (2006). Chem Phys Lett 427: 159

    Article  CAS  Google Scholar 

  15. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M and Kitaura K (2002). Chem Phys Lett 351: 475

    Article  CAS  Google Scholar 

  16. Ode H, Neya S, Hata M, Sugiura W and Hoshino T (2006). J Am Chem Soc 128: 7887

    Article  CAS  Google Scholar 

  17. Amari S, Aizawa M, Zhang J, Fukuzawa K, Mochizuki Y, Iwasawa Y, Nakata K, Chuman H and Nakano T (2006). J Chem Inf Model 46: 221

    Article  CAS  Google Scholar 

  18. Mochizuki Y, Fukuzawa K, Kato A, Tanaka S, Kitaura K and Nakano T (2005). Chem Phys Lett 410: 247

    Article  CAS  Google Scholar 

  19. Pulay P (1983). Chem Phys Lett 100: 151

    Article  CAS  Google Scholar 

  20. Pulay P, Saebø S and Meyer W (1984). J Chem Phys 81: 1901

    Article  CAS  Google Scholar 

  21. Saebø S, Tong W and Pulay P (1993). J Chem Phys 98: 2170

    Article  Google Scholar 

  22. Hampel C and Werner H-J (1996). J Chem Phys 1996(104): 6286

    Article  Google Scholar 

  23. Pulay P and Saebø S (1986). Theo Chim Acta 69: 357

    Article  CAS  Google Scholar 

  24. Boughton JW and Pulay P (1993). J Comp Chem 14: 736

    Article  CAS  Google Scholar 

  25. Rauhut G, Pulay P and Werner H-J (1998). J Comp Chem 19: 1241

    Article  CAS  Google Scholar 

  26. Schütz M, Hetzer G and Werner H-J (1999). J Chem Phys 111: 5691

    Article  Google Scholar 

  27. Subotnik JE and Head-Gordon M (2005). J Chem Phys 122: 034109

    Article  Google Scholar 

  28. Scuseria GE and Ayala PY (1999). J Chem Phys 111: 8330

    Article  CAS  Google Scholar 

  29. Werner H-J, Manby FR and Knowles P (2003). J Chem Phys 118: 8149

    Article  CAS  Google Scholar 

  30. Saebø S and Pulay P (2001). J Chem Phys 115: 3975

    Article  Google Scholar 

  31. Hetzer G, Pulay P and Werner H-J (1998). Chem Phys Lett 290: 143

    Article  CAS  Google Scholar 

  32. Hetzer G, Schütz M, Stoll H and Werner H-J (2000). J Chem Phys 113: 9443

    Article  CAS  Google Scholar 

  33. Schütz M, Rauhut G and Werner H-J (1998). J Phys Chem A 102: 5997

    Article  Google Scholar 

  34. Kitaura K, Sugiki S-I, Nakano T, Komeiji Y and Uebayasi M (2001). Chem Phys Lett 336: 163

    Article  CAS  Google Scholar 

  35. Foresman JB and Frisch A (1996). Exploring chemistry with electronic structure methods. Gaussian, Pittsburgh

    Google Scholar 

  36. Message Passing Interface (MPI) http://www.mpi-forum.org/

  37. Fedorov GD, Olson RM, Kitaura K, Gordon MS and Koseki S (2004). J Comp Chem 25: 872

    Article  CAS  Google Scholar 

  38. Stoll V, Qin W, Stewart KD, Jakob C, Park C, Walter K, Simmer RL, Helfrich RH, Bussiere D, Kao J, Kempf D, Sham HL and Norbeck WD (2002). Bioorg Med Chem 10: 2803

    Article  CAS  Google Scholar 

  39. Protein Data Bank (PDB) http://www.pdb.org/

  40. Kagan RM, Shenderovich MD, Heseltine PNR and Ramnarayan K (2006). Protein Sci 14: 1870

    Article  Google Scholar 

  41. Halgren T (1999). J Am Chem Soc 112: 4710

    Article  Google Scholar 

  42. Wang J, Cieplak P and Kollman PA (2000). J Comp Chem 21: 1049

    Article  CAS  Google Scholar 

  43. Pipek J and Mezey G (1998). J Chem Phys 90: 4916

    Article  Google Scholar 

  44. Boys SF (1966). In Quantum Theory of Atoms, Molecule and the Solid State, Löwdin, PO, Ed. Academic Press, New York

    Google Scholar 

  45. Boys SF and Bernardi F (1970). Mol Phys 19: 533

    Article  Google Scholar 

  46. Nishio M, Hirota M and Umezawa Y (1998). The CH/π interaction. Wiley–VCH, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T., Mochizuki, Y., Amari, S. et al. Fragment interaction analysis based on local MP2. Theor Chem Account 118, 937–945 (2007). https://doi.org/10.1007/s00214-007-0374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0374-7

Keywords

Navigation