Skip to main content

Structural Applications of Graphene Based Biopolymer Nanocomposites

  • Chapter
  • First Online:
Graphene Based Biopolymer Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

Abstract

From last few years, researchers are paying more attention to fabricating graphene based biopolymer nanocomposites due to their extensive applications. Graphene is a 2D material that contains long chain of C atom. It is the most versatile material used to reinforce the properties of biopolymer nanocomposites. There are various methods used for the preparation of graphene based biopolymer nanocomposites. Nowadays, graphene is widely used very in the biomedical applications. Graphene and is derivatives such as graphene oxide (GO), reduced graphene oxide (rGO) and functionalized graphene oxide (FGO) are incorporated with different polymers in various applications. They would be more utilized in structural applications due to the hard, thin and tough behavior. They also improve the mechanical strength of biopolymers. GO is a stable or potential material suitable for various applications such as energy storage, aircraft components etc. It has excellent absorbing property than other nanoparticles. Graphene based biopolymers nanocomposites are used in the preparation of structural components of the materials. Graphene based biopolymer nanocomposites have unique property of degradation. Graphene based biopolymers have found its application in different packaging materials. This chapter aims to discuss the different structural applications of graphene based biopolymer nanocomposites. Graphene based biopolymer nanocomposites are used as an absorbent, energy storage material and drug delivery agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma B, Malik P, Jain P (2018) Biopolymer reinforced nanocomposites: a comprehensive review. Mater Today Commun 16:353–363

    Article  CAS  Google Scholar 

  2. Giri J, Adhikari R (2020) Biodegradable copolyester-based natural fibers–polymer composites: morphological, mechanical, and degradation behavior. In: Advances in sustainable polymers. Springer, Singapore, pp 289–319

    Google Scholar 

  3. Sharma B, Malik P, Jain P (2019) To study the effect of processing conditions on structural and mechanical characterization of graphite and graphene oxide-reinforced PVA nanocomposite. Polym Bull 76(8):3841–3855

    Article  CAS  Google Scholar 

  4. de Bruyn WJ, Clark CD, Senstad M, Toms N, Harrison AW (2020) Biological degradation of ethanol in Southern California coastal seawater. Mar Chem 218:103703

    Article  CAS  Google Scholar 

  5. Brebu M (2020) Environmental degradation of plastic composites with natural fillers—a review. Polymers 12(1):166

    Article  CAS  Google Scholar 

  6. Sharma B, Shekhar S, Gautam S, Jain P (2018) Dynamic shear rheology behavior and long term stability kinetics of reduced graphene oxide filled poly (vinyl alcohol) biofilm. Polym Testing 69:583–592

    Article  CAS  Google Scholar 

  7. Mullani N, Ali I, Dongale TD, Kim GH, Choi BJ, Basit MA, Park TJ (2020) Improved resistive switching behavior of multiwalled carbon nanotube/TiO2 nanorods composite film by increased oxygen vacancy reservoir. Mater Sci Semicond Process 108:104907

    Article  CAS  Google Scholar 

  8. Sharma B, Gautam S, Shekhar S, Sharma R, Rajawat DS, Jain P (2019) Facile synthesis of poly (vinyl alcohol) nanocomposite & its potential application to enhance electrochemical performance. Polym Testing 74:119–126

    Article  CAS  Google Scholar 

  9. Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci 6(3):205–212

    Article  CAS  Google Scholar 

  10. Wu H, Fahy W, Kim S, Kim H, Zhao N, Pilato L, Kafi A, Bateman S, Koo JH (2020) Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progr Mater Sci:100638

    Google Scholar 

  11. Jain P, Shekhar S, Chaudhary V (2019) Synergistic reinforcement of graphene oxide-polyvinyl alcohol bionanocomposite to enhance mechanical performance. Res Rev J Phys 8(3):20–26

    Google Scholar 

  12. Preethi R, Leena MM, Moses JA, Anandharamakrishnan C (2020) Biopolymer nanocomposites and its application in food processing. In: Green nanomaterials. Springer, Singapore, pp 283–317

    Google Scholar 

  13. Murugesan S, Scheibel T (2020) Copolymer/clay nanocomposites for biomedical applications. Adv Funct Mater 1908101

    Google Scholar 

  14. Sreedharan V, Sivapullaiah PV (2014) Swell behavior of organo clay and organo clay-bentonite mixtures. In: Geo-congress 2014: geo-characterization and modeling for sustainability, pp 1940–1950

    Google Scholar 

  15. Shelley JS, Mather PT, DeVries KL (2001) Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer 42(13):5849–5858

    Article  CAS  Google Scholar 

  16. Hegde M, Yang L, Vita F, Fox RJ, van de Watering R, Norder B, Lafont U, Francescangli O, Madsen LA, Picken SJ, Samulski ET, Dingemans., T.J. (2020) Strong graphene oxide nanocomposites from aqueous hybrid liquid crystals. Nat Commun 11(1):1–7

    Article  CAS  Google Scholar 

  17. Sun BG, Lei Q, Guo Y, Shi HQ, Sun JB, Yang KX, Zhou H, Li YQ, Hu N, Wang H, Fu SY (2019) Enhanced mechanical properties at 400° C of carbon fabric reinforced phthalonitrile composites by high temperature postcure. Compos B Eng 166:681–687

    Article  CAS  Google Scholar 

  18. Bhasha SS, Jain P, Thin films prepared using sol gel dip coating method. Metal Chalcogenide Nanostruct Charact Synth 86

    Google Scholar 

  19. Wang P, Xiong Z, Xiong H, Cai J (2020) Synergistic effects of modified TiO2/multifunctionalized graphene oxide nanosheets as functional hybrid nanofiller in enhancing the interface compatibility of PLA/starch nanocomposites. J Appl Polym Sci

    Google Scholar 

  20. Shekhar S, Sarkar A, Sharma B, Jain P (2019) Electrochemical evaluation of functionalized graphene oxide filled PVA-chitosan biohybrid for supercapacitor applications. J Appl Polym Sci: 48610

    Google Scholar 

  21. Tanaka T, Montanari GC, Mulhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans Dielectr Electr Insul 11(5):763–784

    Article  CAS  Google Scholar 

  22. Manral A, Ahmad F, Sharma B (2019) Advances in curing methods of reinforced polymer composites. Reinforced polymer composites: processing, characterization and post life cycle assessment

    Google Scholar 

  23. Aslfattahi N, Saidur R, Arifutzzaman A, Sadri R, Bimbo N, Sabri MFM, Maughan PA, Bouscarrat L, Dawson RJ, Said SM, Goh BT, Sidlik NAC (2020) Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as a new class of nanocomposites. J Energy Storage 27:101115

    Article  Google Scholar 

  24. Wohlhauser S, Kuhnt T, Meesorn W, Montero de Espinosa L, Zoppe JO, Weder C (2020) One-component nanocomposites based on polymer-grafted cellulose nanocrystals. Macromolecules 53(3):821–834

    Article  CAS  Google Scholar 

  25. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv Mater 27(7):1143–1169

    Article  CAS  Google Scholar 

  26. Ramanathan T, Stankovich S, Dikin DA, Liu H, Shen H, Nguyen ST, Brinson LC (2007) Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposite properties. J Polym Sci Part B Polym Phys 45(15):2097–2112

    Article  CAS  Google Scholar 

  27. Bhasha S, Singh S, Jain P, Malik P (2015) Synthesis and characterization of nanocrystalline zinc oxide thin films via green chemistry. J Nanoanal 2(1):10–16

    Google Scholar 

  28. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  29. Jung J, DaSilva AM, MacDonald AH, Adam S (2015) Origin of band gaps in graphene on hexagonal boron nitride. Nat Commun 6(1):1–11

    Article  Google Scholar 

  30. Jin Y (2004) Atomistic simulations of fracture of 2d graphene systems and the elastic properties of carbon nanotubes

    Google Scholar 

  31. Thakur AK, Majumder M, Singh SB (2019) Graphene and its derivatives for secondary battery application. In: Surface engineering of graphene. Springer, Cham, pp. 53–80

    Google Scholar 

  32. Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63(11):1517–1524

    Article  CAS  Google Scholar 

  33. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Munoz-Sandoval E, Cano-Márquez AG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Article  CAS  Google Scholar 

  34. Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49(11):3488–3496

    Article  CAS  Google Scholar 

  35. Liaros N, Tucek J, Dimos K, Bakandritsos A, Andrikopoulos KS, Gournis D, Zboril R, Couris S (2016) The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide. Nanoscale 8(5), 2908–2917

    Google Scholar 

  36. Zhao G, Wen T, Chen C, Wang X (2012) Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Adv 2(25):9286–9303

    Article  CAS  Google Scholar 

  37. Long Y, Zhang C, Wang X, Gao J, Wang W, Liu Y (2011) Oxidation of SO 2 to SO 3 catalyzed by graphene oxide foams. J Mater Chem 21(36):13934–13941

    Article  CAS  Google Scholar 

  38. Nishina Y, Siegfried E (2020) Chemical and electrochemical synthesis of graphene oxide–a generalized view. Nanoscale

    Google Scholar 

  39. Zhu Y, Wan T, Guan P, Wang Y, Wu T, Han Z, Tang G, Chu D (2020) Improving thermal and electrical stability of silver nanowire network electrodes through integrating graphene oxide intermediate layers. J Colloid Interface Sci 566:375–382

    Article  CAS  Google Scholar 

  40. Sharma B, Shekhar S, Malik P, Jain P (2018) Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets. Mater Res Expr 5(6):065012

    Article  CAS  Google Scholar 

  41. Zhen XJ, Huang YF, Yang SS, Feng ZZ, Wang Y, Li CH, Miao YJ, Yin H (2020) The effect of 500 keV proton irradiation on reduced graphene oxide paper. Mater Lett 260:126880

    Article  CAS  Google Scholar 

  42. Huang HH, Joshi RK, De Silva KKH, Badam R, Yoshimura M (2019) Fabrication of reduced graphene oxide membranes for water desalination. J Membr Sci 572:12–19

    Article  CAS  Google Scholar 

  43. Sharma B, Shekhar S, Gautam S, Sarkar A, Jain P (2018) Nanomechanical analysis of chemically reduced graphene oxide reinforced poly (vinyl alcohol) nanocomposite thin films. Polym Test 70:458–466

    Article  CAS  Google Scholar 

  44. Deka MJ, Das P, Boruah PK, Barthakur P, Gogoi A, Das MR (2020) Plasmonic nanoparticles decorated graphene sheets for detection of water pollutants. In: Sensors in water pollutants monitoring: role of material. Springer, Singapore, pp 79–106

    Google Scholar 

  45. Muniyalakshmi M, Sethuraman K, Silambarasan D (2020) Synthesis and characterization of graphene oxide nanosheets. Mater Today Proc 21:408–410

    Google Scholar 

  46. Han C, Xu YJ (2020) The surface chemistry of graphene-based materials: functionalization, properties, and applications. In: Interface science and technology, vol 31). Elsevier, pp 453–474

    Google Scholar 

  47. Cygan T, Petrus M, Wozniak J, Cygan S, Teklińska D, Kostecki M, Jaworska L, Olszyna A (2020) Mechanical properties and tribological performance of alumina matrix composites reinforced with graphene-family materials. Ceram Int 46(6):7170–7177

    Article  CAS  Google Scholar 

  48. Hou S, Su S, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501(1–3):68–74

    Article  CAS  Google Scholar 

  49. Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T (2018) Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front Chem Sci Eng 12(3):376–382

    Article  CAS  Google Scholar 

  50. Kim J, Jeon JH, Kim HJ, Lim H, Oh IK (2014) Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano 8(3):2986–2997

    Article  CAS  Google Scholar 

  51. Rouf TB, Kokini JL (2016) Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51(22):9915–9945

    Article  CAS  Google Scholar 

  52. Hegde M, Yang L, Vita F, Fox RJ, van de Watering R, Norder B, Lafont U, Francescangeli U, Madsen LA, Picken SJ, Samulski ET, Dingemans TJ (2020) Strong graphene oxide nanocomposites from aqueous hybrid liquid crystals. Nat Commun 11(1):1–7

    Article  CAS  Google Scholar 

  53. Huang X, Li R, Zeng L, Li X, Xi Z, Wang K, Li Y (2020) A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: a study on dispersion, electrical and mechanical properties. Carbon 161:350–358

    Article  CAS  Google Scholar 

  54. Cobos M, De-La-Pinta I, Quindós G, Fernández MJ, Fernández MD (2020) Synthesis, physical, mechanical and antibacterial properties of nanocomposites based on poly (vinyl alcohol)/graphene oxide-silver nanoparticles. Polymers 12(3):723

    Article  CAS  Google Scholar 

  55. Graziano A, Garcia C, Jaffer S, Tjong J, Sain M (2020) Novel functional graphene and its thermodynamic interfacial localization in biphasic polyolefin systems for advanced lightweight applications. Compos Sci Technol 188:107958

    Article  CAS  Google Scholar 

  56. Marathe UN, Bijwe J (2020) High performance polymer composites-influence of processing technique on the fiber length and performance properties. Wear 446:203189

    Article  CAS  Google Scholar 

  57. Majumdar P, Chakrabarti A (2020) Diverse applications of graphene-based polymer nanocomposites. In: Diverse applications of organic-inorganic nanocomposites: emerging research and opportunities. IGI Global, pp 47–82

    Google Scholar 

  58. Wang Y, Lei M, Wei Q, Wang Y, Zhang J, Guo Y, Saroia J (2020) 3D printing biocompatible l-Arg/GNPs/PLA nanocomposites with enhanced mechanical property and thermal stability. J Mater Sci 55(12):5064–5078

    Article  CAS  Google Scholar 

  59. Divakaran N, Zhang X, Kale MB, Senthil T, Mubarak S, Dhamodharan D, Wu L, Wang J (2020) Fabrication of surface modified graphene oxide/unsaturated polyester nanocomposites via in-situ polymerization: comprehensive property enhancement. Appl Surf Sci 502:144164

    Article  CAS  Google Scholar 

  60. Uzunpinar C (2011) Carbon nanofiller reinforced epoxy nanocomposites. Doctoral dissertation, Auburn University

    Google Scholar 

  61. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54(19):5087–5103

    Article  CAS  Google Scholar 

  62. Peregrino PP, Sales MJ, da Silva MF, Soler MA, da Silva LF, Moreira SG, Paterno LG (2014) Thermal and electrical properties of starch–graphene oxide nanocomposites improved by photochemical treatment. Carbohyd Polym 106:305–311

    Article  CAS  Google Scholar 

  63. Ma J, Li Y, Yin X, Xu Y, Yue J, Bao J, Zhou T (2016) Poly (vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv 6(55):49448–49458

    Article  CAS  Google Scholar 

  64. Zhao L, Liu X, Zhang R, He H, Jin T, Zhang J (2015) Unique morphology in polylactide/graphene oxide nanocomposites. J Macromolec Sci Part B 54(1):45–57

    Article  CAS  Google Scholar 

  65. Nezakati T, Tan A, Seifalian AM (2014) Enhancing the electrical conductivity of a hybrid POSS–PCL/graphene nanocomposite polymer. J Colloid Interface Sci 435:145–155

    Article  CAS  Google Scholar 

  66. Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S (2015) Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater Sci Eng C 48:384–390

    Article  CAS  Google Scholar 

  67. Thakur S, Karak N (2014) Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. J Mater Chem 2(36):14867–14875

    Article  CAS  Google Scholar 

  68. Kumar NA, Choi HJ, Shin YR, Chang DW, Dai L, Baek JB (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6(2):1715–1723

    Article  CAS  Google Scholar 

  69. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR (2017) Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci 115:78–92

    Article  CAS  Google Scholar 

  70. Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20(11):286

    Article  CAS  Google Scholar 

  71. Mancinelli P, Fabiani D, Schirone F, Vanga-Bouanga C, Fréchette MF (2015) Space charge behavior of LDPE graphene-oxide nanocomposites. In: 2015 IEEE conference on electrical insulation and dielectric phenomena (CEIDP). IEEE, pp 547–550

    Google Scholar 

  72. Xu WP, Zhang LC, Li JP, Lu Y, Li HH, Ma YN, Wang WD, Yu SH (2011) Facile synthesis of silver@ graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21(12):4593–4597

    Article  CAS  Google Scholar 

  73. Turcheniuk K, Boukherroub R, Szunerits S (2015) Gold–graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 3(21):4301–4324

    Article  CAS  Google Scholar 

  74. Marlinda AR, Huang NM, Muhamad MR, An’Amt MN, Chang BYS, Yusoff N, Harrison I, Lim HN, Chia CH, Kumar SV (2012) Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater Lett 80:9–12

    Article  CAS  Google Scholar 

  75. Yu Z, Di H, Ma Y, He Y, Liang L, Lv L, Ran X, Pan Y, Luo Z (2015) Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surf Coat Technol 276:471–478

    Article  CAS  Google Scholar 

  76. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212

    Article  CAS  Google Scholar 

  77. Liu T, Gao B, Fang J, Wang B, Cao X (2016) Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb (II) and Cd (II) removal. Rsc Adv 6(29):24314–24319

    Article  CAS  Google Scholar 

  78. Wang Q, Li G, Zhang J, Huang F, Lu K, Wei Q (2014) PAN nanofibers reinforced with MMT/GO hybrid nanofillers. J Nanomater

    Google Scholar 

  79. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950

    Article  CAS  Google Scholar 

  80. Kafy A, Yadav M, Kumar K, Kumar K, Mun S, Gao X, Kim J (2014) Synthesis and characterization of graphene/cellulose nanocomposite. In: Nanosensors, biosensors, and info-tech sensors and systems 2014, vol 9060. International Society for Optics and Photonics, p 906008

    Google Scholar 

  81. Ronci F, Colonna S, Flammini R, De Crescenzi M, Scarselli M, Salvato M, Berbezier I, Jardali F, Lechner C, Pochet P, Vach H, Castrucci P (2020) High graphene permeability for room temperature silicon deposition: he role of defects. Carbon 158:631–641

    Article  CAS  Google Scholar 

  82. Decroix C, Chalamet Y, Sudre G, Caroll V (2020) Thermo-mechanical properties and blend behaviour of cellulose acetate/lactates and acid systems: natural-based plasticizers. Carbohydr Polym 116072

    Google Scholar 

  83. Azammi AN, Ilyas RA, Sapuan SM, Ibrahim R, Atikah MSN, Asrofi M, Atiqah A (2020) Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In: Interfaces in particle and fibre reinforced composites. Woodhead Publishing, pp 29–93

    Google Scholar 

  84. Liu L (2006) Bioplastics in food packaging: Innovative technologies for biodegradable packaging. San Jose State Univ Pack Eng 13:1348–1368

    Google Scholar 

  85. Kafy A, Sadasivuni KK, Akther A, Min SK, Kim J (2015) Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material. Mater Lett 159:20–23

    Article  CAS  Google Scholar 

  86. Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922

    Article  CAS  Google Scholar 

  87. Kafy A, Sadasivuni KK, Kim HC, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17(8):5923–5931

    Article  CAS  Google Scholar 

  88. Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11(8):994–1002

    Article  CAS  Google Scholar 

  89. Zhang C, Xu S, Cai D, Cao J, Wang L, Han W (2020) Planar supercapacitor with high areal capacitance based on Ti3C2/Polypyrrole composite film. Electrochim Acta 330:135277

    Article  CAS  Google Scholar 

  90. Shekhar S, Sharma R, Sharma S, Sharma B, Sarkar A, Jain P (2020) An exploration of electrocatalytic analysis and antibacterial efficacy of electrically conductive poly (D-Glucosamine)/graphene oxide bionanohybrid. Carbohydr Polym 116242

    Google Scholar 

  91. Wan CF, Cui Y, Gai WX, Cheng ZL, Chung TS (2020) Nanostructured membranes for enhanced forward osmosis and pressure-retarded osmosis. In: Sustainable nanoscale engineering. Elsevier, pp 373–394

    Google Scholar 

  92. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2016) Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methylcellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polym-Plast Technol Eng 55(12):1240–1253

    Article  CAS  Google Scholar 

  93. Bhirud A, Sathaye S, Waichal R, Park CJ, Kale B (2015) In situ preparation of N-ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. J Mater Chem 3(33):17050–17063

    Article  CAS  Google Scholar 

  94. El-Gendy DM, Afifi IM, Allam NK (2019) Eco-friendly, one-step synthesis of cobalt sulfide-decorated functionalized graphene for high-performance supercapacitors. J Energy Storage 24:100760

    Article  Google Scholar 

  95. Sethi M, Bantawal H, Shenoy US, Bhat DK (2019) Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material. J Alloy Compd 799:256–266

    Article  CAS  Google Scholar 

  96. Sahoo S, Dhibar S, Hatui G, Bhattacharya P, Das CK (2013) Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54(3):1033–1042

    Article  CAS  Google Scholar 

  97. Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A (2020) Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev 60(1):144–170

    Article  CAS  Google Scholar 

  98. Chandy T (2020) Biocompatibility of materials and its relevance to drug delivery and tissue engineering. In: Biointegration of medical implant materials. Woodhead Publishing, pp 297–331

    Google Scholar 

  99. Chen Y, Guo C, Manousiouthakis E, Wang X, Cairns DM, Roh TT, Du C, Kaplan DL (2020) Bi-layered tubular microfiber scaffolds as functional templates for engineering human intestinal smooth muscle tissue. Adv Funct Mater 2000543

    Google Scholar 

  100. Christy PN, Basha SK, Kumari VS, Bashir AKH, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S (2020) Biopolymeric nanocomposite scaffolds for bone tissue engineering applications–a review. J Drug Deliv Sci Technol 55:101452

    Article  CAS  Google Scholar 

  101. Pacheco C, Sousa F, Sarmento B (2020) Chitosan-based nanomedicine for brain delivery: where are we heading? React Funct Polym 146:104430

    Article  CAS  Google Scholar 

  102. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257

    Article  CAS  Google Scholar 

  103. Qi YY, Tai ZX, Sun DF, Chen JT, Ma HB, Yan XB, Liu B, Xue QJ (2013) Fabrication and characterization of poly (vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J Appl Polym Sci 127(3):1885–1894

    Article  CAS  Google Scholar 

  104. Sandhya PK, Jose J, Sreekala MS, Padmanabhan M, Kalarikkal N, Thomas S (2018) Reduced graphene oxide and ZnO decorated graphene for biomedical applications. Ceram Int 44(13):15092–15098

    Article  CAS  Google Scholar 

  105. Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50(49):11644–11648

    Article  CAS  Google Scholar 

  106. CAFÉ, C. (2020). 1.1 Related documents. Construction of new safari Café building at Cape May County Park & Zoo, 220356

    Google Scholar 

  107. Silvestre J, Silvestre N, De Brito J (2016) Review on concrete nanotechnology. Eur J Environ Civil Eng 20(4):455–485

    Article  Google Scholar 

  108. Alkhateb H, Al-Ostaz A, Cheng AHD, Li X (2013) Materials genome for graphene-cement nanocomposites. J Nanomech Micromech 3(3):67–77

    Article  Google Scholar 

  109. Chuah S, Pan Z, Sanjayan JG, Wang CM, Duan WH (2014) Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater 73:113–124

    Article  Google Scholar 

  110. Sun S, Ding S, Han B, Dong S, Yu X, Zhou D, Ou J (2017) Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos B Eng 129:221–232

    Article  CAS  Google Scholar 

  111. Han B, Zheng Q, Sun S, Dong S, Zhang L, Yu X, Ou J (2017) Enhancing mechanisms of multi-layer graphenes to cementitious composites. Compos Appl Sci Manuf 101:143–150

    Article  CAS  Google Scholar 

  112. Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ (2014) Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci 111(27):9762–9767

    Article  CAS  Google Scholar 

  113. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1

    CAS  Google Scholar 

  114. Dai H, Huang Y, Huang H (2018) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohyd Polym 185:1–11

    Article  CAS  Google Scholar 

  115. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem 1(6):1992–2001

    Article  CAS  Google Scholar 

  116. Omidi S, Kakanejadifard A (2018) Eco-friendly synthesis of graphene–chitosan composite hydrogel as efficient adsorbent for Congo red. RSC Adv 8(22):12179–12189

    Article  CAS  Google Scholar 

  117. Wang H, Li J, Ding N, Zeng X, Tang X, Sun Y, Lei T, Lin L (2020) Eco-friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chem Eng J 124021

    Google Scholar 

  118. Deng H, Yu Z, Chen S, Fei L, Sha Q, Zhou N, Chen Z, Xu C (2020) Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohyd Polym 230:115565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Chemistry, Netaji Subhas University of Technology for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Gautam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, S., Sharma, B., Jain, P. (2021). Structural Applications of Graphene Based Biopolymer Nanocomposites. In: Sharma, B., Jain, P. (eds) Graphene Based Biopolymer Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-9180-8_4

Download citation

Publish with us

Policies and ethics