Skip to main content

Natural Biopolymer-Based Nanocomposite Films for Packaging Applications

  • Chapter
  • First Online:
Bionanocomposites for Packaging Applications

Abstract

Recent interest in environmentally friendly bio-based polymers coupled with an increased food safety awareness has resulted in various packaging technology advances, including the incorporation of different kinds of nanofillers into biodegradable biopolymers to improve their overall properties for improving shelf life and preventing microbial growth. Among the different nanofillers that have recently emerged, graphene’s invention has catalyzed a multitude of novel material applications in different fields. Graphene has functionalized different biopolymers and has improved their mechanical, thermal, electrical, as well as, gas, and water vapor barrier properties, for potentially replacing petrochemical-based packaging materials that pose a great threat to the environment. The objective of this chapter is to provide comprehensive understanding of the different types of nanoreinforcement that are available for biodegradable packaging application, especially focusing on graphene oxide (GO), a graphene derivative nanofiller that is being extensively studied for packaging reinforcement. This chapter aims to draw a clear picture of synthesis and chemistry of bonding between graphene derivatives and biodegradable biopolymers suitable for packaging applications, like starch, cellulose, poly(lactic acid), and others. The methodology behind the chemical and physical changes during synthesis will be discussed, based on different spectroscopic characterization techniques, and the influence of chemical changes on resulting properties will also be highlighted. This chapter will also briefly go over other nanomaterials like clay, cellulose nanofibers, starch nanocrystals, and their usage in different biopolymers for packaging application. This will help to explain the synergy resulting from addition of nanomaterials, the use of different characterization techniques as well as the improvement in different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352. doi:10.1002/pen.760160512

    Article  Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  Google Scholar 

  • Alexandre B, Langevin D, Médéric P et al (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Membr Sci 328:186–204

    Article  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci Technol 41:1100–1107

    Article  Google Scholar 

  • Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    Article  Google Scholar 

  • Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931

    Article  Google Scholar 

  • Ashori A (2014) Effects of graphene on the behavior of chitosan and starch nanocomposite films. Polym Eng Sci 54:2258–2263

    Article  Google Scholar 

  • Ashori A, Bahrami R (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym-Plast Technol Eng 53:312–318

    Article  Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  Google Scholar 

  • Azeredo H, Mattoso LHC, Wood D et al (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Barrett J (2014) Physical and biochemical strategies for improving the yield and material properties of Polyhydroxyalkanoate Biopolymers

    Google Scholar 

  • Barrett JSF, Abdala AA, Srienc F (2014) Poly(hydroxyalkanoate) Elastomers and their Graphene nanocomposites. Macromolecules 47:3926–3941. doi:10.1021/ma500022x

    Article  Google Scholar 

  • Bharadwaj RK, Mehrabi AR, Hamilton C et al (2002) Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer 43:3699–3705

    Article  Google Scholar 

  • Bin Y, Mine M, Koganemaru A et al (2006) Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites. Polymer 47:1308–1317

    Article  Google Scholar 

  • Boehm H-P (2010) Graphene—how a laboratory curiosity suddenly became extremely interesting. Angew Chem Int Ed 49:9332–9335

    Article  Google Scholar 

  • Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  • Brody AL (2006) Nano and food packaging technologies converge

    Google Scholar 

  • Cabedo L, Giménez E, Lagaron JM et al (2004) Development of EVOH-kaolinite nanocomposites. Polymer 45:5233–5238. doi:10.1016/j.polymer.2004.05.018

    Article  Google Scholar 

  • Cabedo L, Luis Feijoo J, Pilar Villanueva M et al (2006) Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. In: Macromolecular Symposia. Wiley Online Library, pp 191–197

    Google Scholar 

  • Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839

    Article  Google Scholar 

  • Celzard A, Mareche JF, Furdin G, Puricelli S (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D Appl Phys 33:3094

    Article  Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohyd Polym 61:455–463. doi:10.1016/j.carbpol.2005.06.020

    Article  Google Scholar 

  • Chen P, Zhang L (2006) Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules 7:1700–1706

    Article  Google Scholar 

  • Chen G, Weng W, Wu D et al (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42:753–759

    Article  Google Scholar 

  • Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252:1404–1409

    Article  Google Scholar 

  • Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohyd Polym 73:8–17

    Article  Google Scholar 

  • Chiu W-M, Chang Y-A, Kuo H-Y et al (2008) A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J Appl Polym Sci 108:3024–3030. doi:10.1002/app.27796

    Article  Google Scholar 

  • Chung DDL (2016) A review of exfoliated graphite. J Mater Sci 51:554–568

    Article  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73:55–63. doi:10.1016/j.carbpol.2007.11.014

    Article  Google Scholar 

  • Dai J, Wang G, Ma L, Wu C (2015) Study on the surface energies and dispersibility of graphene oxide and its derivatives. J Mater Sci 50:3895–3907

    Article  Google Scholar 

  • Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073

    Article  Google Scholar 

  • De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi:10.1016/j.foodres.2009.03.019

  • de Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbohyd Polym 45:189–194. doi:10.1016/S0144-8617(00)00315-5

    Article  Google Scholar 

  • de Moura MR, Aouada FA, Avena-Bustillos RJ et al (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92:448–453

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dean K, Yu L (2005) Biodegradable protein-nanoparticles composites. Biodegradable polymers for industrial applications. Woodhead Publishing Ltd, Cambridge, UK, pp 289–312

    Book  Google Scholar 

  • Dervishi E, Biris AR, Watanabe F et al (2011) Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system. J Mater Sci 47:1910–1919. doi:10.1007/s10853-011-5980-z

    Article  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  • Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771

    Article  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  Google Scholar 

  • Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699

    Article  Google Scholar 

  • Duncan TV, Pillai K (2014) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 7:2–19

    Article  Google Scholar 

  • Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly(acrylic acid)/gelatin composite hydrogels. J Appl Phys 115:083513

    Article  Google Scholar 

  • Fang M, Wang K, Lu H et al (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992

    Article  Google Scholar 

  • Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  Google Scholar 

  • Guan G, Lu J, Jiang H (2016) Preparation, characterization, and physical properties of graphene nanosheets and films obtained from low-temperature expandable graphite. J Mater Sci 51:926–936

    Article  Google Scholar 

  • Guo J, Liu J, Yang B et al (2015) Biodegradable junctionless transistors with extremely simple structure. Electron Device Lett IEEE 36:908–910

    Article  Google Scholar 

  • He L, Wang H, Xia G et al (2014) Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl Surf Sci 314:510–515

    Article  Google Scholar 

  • He Y, Zhang N, Gong Q et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohyd Polym 88:1100–1108

    Article  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  Google Scholar 

  • Hu AW, Fu ZH (2003) Nanotechnology and its application in packaging and packaging machinery. Packag Eng 24:22–24

    Google Scholar 

  • Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS nano 4:4317–4323

    Article  Google Scholar 

  • Huang H-D, Liu C-Y, Li D et al (2014) Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. J Mater Chem A 2:15853–15863

    Article  Google Scholar 

  • Huang L, Li D-Q, Lin Y-J et al (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  Google Scholar 

  • Huang M, Yu J, Ma X (2006) High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohyd Polym 63:393–399

    Article  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101

    Article  Google Scholar 

  • Jayasena B, Reddy CD, Subbiah S (2013) Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology 24:205301. doi:10.1088/0957-4484/24/20/205301

    Article  Google Scholar 

  • Jeon GW, An J-E, Jeong YG (2012) High performance cellulose acetate propionate composites reinforced with exfoliated graphene. Compos B Eng 43:3412–3418

    Article  Google Scholar 

  • Jiang B, Liu C, Zhang C et al (2007) The effect of non-symmetric distribution of fiber orientation and aspect ratio on elastic properties of composites. Compos B Eng 38:24–34

    Article  Google Scholar 

  • Jones P, Clarke-Hill C, Shears P et al (2004) Radio frequency identification in the UK: opportunities and challenges. Int J Retail Distrib Manag 32:164–171

    Article  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  Google Scholar 

  • Kaplan DL (1998) Introduction to biopolymers from renewable resources. In: Kaplan DDL (ed) Biopolymers from renewable resources. Springer, Berlin Heidelberg, pp 1–29

    Chapter  Google Scholar 

  • Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48:850–858

    Article  Google Scholar 

  • Kim JY, Han SI, Hong S (2008) Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 49:3335–3345

    Article  Google Scholar 

  • Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano today 7:137–152

    Article  Google Scholar 

  • Kuan C-F, Kuan H-C, Ma C-CM, Chen C-H (2008) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69:1395–1398. doi:10.1016/j.jpcs.2007.10.060

    Article  Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Article  Google Scholar 

  • Kumar B, Castro M, Feller JF (2012) Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens Actuators B: Chem 161:621–628. doi:10.1016/j.snb.2011.10.077

    Article  Google Scholar 

  • Kvien I, Oksman K (2007) Orientation of cellulose nanowhiskers in polyvinyl alcohol. Appl Phys A 87:641–643

    Article  Google Scholar 

  • Lau AK-T, Hui D (2002) The revolutionary creation of new advanced materials—carbon nanotube composites. Compos B Eng 33:263–277

    Article  Google Scholar 

  • Le T, Lakafosis V, Lin Z et al (2012) Inkjet-printed graphene-based wireless gas sensor modules. In: 2012 IEEE 62nd electronic components and technology conference, 1003–1008

    Google Scholar 

  • Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited||. J Phys Chem B 102:4477–4482

    Google Scholar 

  • Liau SY, Read DC, Pugh WJ et al (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 25:279–283

    Article  Google Scholar 

  • Li H, Li F, Wang L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114:547–552

    Article  Google Scholar 

  • Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohyd Polym 84:631–637

    Article  Google Scholar 

  • Liu X, Sun Q, Wang H et al (2005) Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 26:109–115. doi:10.1016/j.biomaterials.2004.02.013

    Article  Google Scholar 

  • Liu L, Shen Z, Liang S et al (2014) Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite films. J Mater Sci 49:321–328

    Article  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739

    Article  Google Scholar 

  • Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5:1046–1051

    Article  Google Scholar 

  • Luduena LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng, A 460:121–129

    Article  Google Scholar 

  • Luecha J, Hsiao A, Brodsky S et al (2011) Green microfluidic devices made of corn proteins. Lab Chip 11:3419–3425

    Article  Google Scholar 

  • Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45:3529–3537. doi:10.1007/s10853-010-4395-6

    Article  Google Scholar 

  • Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. Adv Appl Microbiol 63:145–181

    Article  Google Scholar 

  • Ma X, Yu J, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268–273. doi:10.1016/j.compscitech.2007.03.016

    Article  Google Scholar 

  • Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohyd Polym 94:63–70

    Article  Google Scholar 

  • Mahmoudian S, Wahit MU, Imran M et al (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12:5233–5239

    Article  Google Scholar 

  • Mark JE (1996) Ceramic-reinforced polymers and polymer-modified ceramics. Polym Eng Sci 36:2905–2920

    Article  Google Scholar 

  • Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. Eur Polymer J 43:3757–3765. doi:10.1016/j.eurpolymj.2007.06.014

    Article  Google Scholar 

  • Mittal V (2007) Polypropylene-layered silicate nanocomposites: filler matrix interactions and mechanical properties. J Thermoplast Compos Mater 20:575–599

    Article  Google Scholar 

  • Mittal V (2008) Mechanical and gas permeation properties of compatibilized polypropylene–layered silicate nanocomposites. J Appl Polym Sci 107:1350–1361

    Article  Google Scholar 

  • Nachay K (2007) Analyzing nanotechnology. Food Technol 61:34–36

    Google Scholar 

  • Nie L, Liu C, Wang J et al (2015) Effects of surface functionalized graphene oxide on the behavior of sodium alginate. Carbohyd Polym 117:616–623

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  • Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohyd Polym 83:1908–1915

    Article  Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  • Park H-M, Li X, Jin C-Z et al (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558

    Article  Google Scholar 

  • Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: ACS symposium series. Oxford University Press, pp 132–150

    Google Scholar 

  • Petersen K, Væggemose Nielsen P, Bertelsen G et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68. doi:10.1016/S0924-2244(99)00019-9

    Article  Google Scholar 

  • Pinto AM, Cabral J, Tanaka DAP et al (2013a) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62:33–40

    Article  Google Scholar 

  • Pinto AM, Moreira S, Gonçalves IC et al (2013b) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf, B 104:229–238

    Article  Google Scholar 

  • Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol 6:2914–2918

    Article  Google Scholar 

  • Pötschke P, Abdel-Goad* M, Pegel S et al (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci Part A 47:12–19

    Google Scholar 

  • Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  • Qi L, Xu Z, Jiang X et al (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 339:2693–2700

    Article  Google Scholar 

  • Qian C, Sun J, Yang J, Gao Y (2015) Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Adv 5:14567–14574

    Article  Google Scholar 

  • Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly [(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stab 92:802–812

    Article  Google Scholar 

  • Ray SS, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866

    Article  Google Scholar 

  • Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433. doi:10.1080/10408390600846366

    Article  Google Scholar 

  • Rhim J-W, Lee J-H, Kwak H-S (2005) Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Sci Biotechnol 14:112–116

    Google Scholar 

  • Rouf TB, Kokini JL (2016) Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51:9915–9945

    Article  Google Scholar 

  • Ruan D, Zhang L, Zhang Z, Xia X (2004) Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J Polym Sci Part B: Polym Phys 42:367–373

    Article  Google Scholar 

  • Ruiz-Garcia L, Lunadei L (2011) The role of RFID in agriculture: applications, limitations and challenges. Comput Electron Agric 79:42–50

    Article  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157

    Article  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohyd Polym 71:235–244

    Article  Google Scholar 

  • Sarac A, Absi N, Dauzère-Pérès S (2010) A literature review on the impact of RFID technologies on supply chain management. Int J Prod Econ 128:77–95

    Article  Google Scholar 

  • Shokrieh MM, Esmkhani M, Shahverdi HR, Vahedi F (2013) Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the Mechanical properties of epoxy nanocomposites. Sci Adv Mater 5:260–266

    Article  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13:171–192

    Article  Google Scholar 

  • Si H, Luo H, Xiong G et al (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35:1706–1711

    Article  Google Scholar 

  • Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Part A 33:585–597. doi:10.1080/10601329608010880

    Article  Google Scholar 

  • Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  • Song K, Zhao X, Xu Y, Liu H (2013) Modification of graphene oxide via photo-initiated grafting polymerization. J Mater Sci 48:5750–5755

    Article  Google Scholar 

  • Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohyd Polym 62:130–136

    Article  Google Scholar 

  • Stanier DC, Patil AJ, Sriwong C et al (2014) The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber. Compos Sci Technol 95:59–66

    Article  Google Scholar 

  • Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Article  Google Scholar 

  • Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506

    Article  Google Scholar 

  • Szabó T, Berkesi O, Forgó P et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749. doi:10.1021/cm060258

  • Terzopoulou Z, Kyzas GZ, Bikiaris DN (2015) Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials 8:652–683

    Article  Google Scholar 

  • Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv 3:9476–9482

    Article  Google Scholar 

  • Thellen C, Orroth C, Froio D et al (2005) Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polymer 46:11716–11727. doi:10.1016/j.polymer.2005.09.057

    Article  Google Scholar 

  • Tian M, Qu L, Zhang X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd Polym 111:456–462

    Article  Google Scholar 

  • Uyama H, Kuwabara M, Tsujimoto T et al (2003) Green nanocomposites from renewable resources: plant oil-clay hybrid materials. Chem Mater 15:2492–2494

    Article  Google Scholar 

  • Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39:47–62

    Article  Google Scholar 

  • Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49:3500–3509. doi:10.1016/j.polymer.2008.06.010

    Article  Google Scholar 

  • Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    Article  Google Scholar 

  • Wang H, Qiu Z (2011) Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236

    Article  Google Scholar 

  • Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46

    Article  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116. doi:10.1111/j.1750-3841.2006.00195.x

    Article  Google Scholar 

  • William S, Hummers JR, Offeman RE, others (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Google Scholar 

  • Xu Y, Zhou J, Hanna MA (2005) Melt-intercalated starch acetate nanocomposite foams as affected by type of organoclay 1. Cereal Chem 82:105–110

    Article  Google Scholar 

  • Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698

    Article  Google Scholar 

  • Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohyd Polym 110:18–25

    Article  Google Scholar 

  • Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805–10815

    Article  Google Scholar 

  • Yasmin A, Luo J-J, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189

    Article  Google Scholar 

  • Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638. doi:10.1002/pat.1312

    Article  Google Scholar 

  • Yoon S-Y, Deng Y (2006) Clay–starch composites and their application in papermaking. J Appl Polym Sci 100:1032–1038

    Article  Google Scholar 

  • Yoon OJ, Jung CY, Sohn IY et al (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos A Appl Sci Manuf 42:1978–1984

    Article  Google Scholar 

  • Yu J, Cui G, Wei M, Huang J (2007) Facile exfoliation of rectorite nanoplatelets in soy protein matrix and reinforced bionanocomposites thereof. J Appl Polym Sci 104:3367–3377. doi:10.1002/app.25969

    Article  Google Scholar 

  • Zeng H, Gao C, Wang Y et al (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122

    Article  Google Scholar 

  • Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohyd Polym 88:26–30

    Article  Google Scholar 

  • Zheng W, Lu X, Wong S-C (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788

    Article  Google Scholar 

  • Zheng P, Ma T, Ma X (2013) Fabrication and properties of starch-grafted graphene nanosheet/plasticized-starch composites. Ind Eng Chem Res 52:14201–14207

    Article  Google Scholar 

  • Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64:2425–2437. doi:10.1016/j.compscitech.2004.06.001

    Article  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef L. Kokini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rouf, T.B., Kokini, J.L. (2018). Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. In: Jawaid, M., Swain, S. (eds) Bionanocomposites for Packaging Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-67319-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67319-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67318-9

  • Online ISBN: 978-3-319-67319-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics