Skip to main content

Pharmacology and Mechanisms of Natural Medicine in Treatment of Type 2 Diabetes Mellitus

  • Chapter
  • First Online:
Evidence Based Validation of Traditional Medicines

Abstract

Diabetes mellitus (DM) is a chronic metabolic disorder that is affecting the worldwide population with high rates of morbidity and mortality. The most prevalent case of DM is type 2 diabetes mellitus (T2DM) which is characterized by insulin resistance and insulin secretion defect due to impaired β-cell functioning. Epidemiological studies implied that the number of diabetic cases has been doubled during the past two decades and has turned out to be a global epidemic accompanied by severe metabolic and endocrine complications over time. The rising emergence of T2DM in children, adolescents, and young adults signifies it to be one of the most dominant perturbing features of its kind. Proper diet control, moderate exercise, and hypoglycemic and lipid-lowering agents are some evident strategies that have been employed in the management of T2DM so far. However, a distinct possibility of severe diabetic complications still exists despite the therapeutic benefits achieved by these drugs. Various in vitro and in vivo models have suggested that phytochemicals exert several pharmacological effects on metabolic disorders such as in hyperglycemia, hypertension, and hyperlipidemia by modulating oxidative stress, inflammatory response, autophagy, and anti-apoptosis effects. Additionally, they have positive modulatory actions on molecular targets of T2DM like insulin signaling, IRS, glucose transporters, α-glucosidase, PPARγ, DPP-IV, PTP1B, NF-κB, etc. Regulation of these maladaptive pathophysiological mechanisms can improve insulin-resistant state, lower blood glucose levels, and protect against various macrovascular and microvascular complications. Thus, natural products have garnered significant interest as bioactive agents in the management of T2DM. This chapter aims to overview the activities and underlying mechanisms of natural medicine in the management of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end products

AGT II:

Angiotensin II

Akt:

Also known as protein kinase B (PKB)

AMPK:

Adenosine monophosphate-activated protein kinase

Bcl-2:

β-cell lymphoma protein 2

BMP 4:

Bone morphogenic protein 4

cAMP:

Cyclic AMP

CB1:

Cannabinoid receptor type 1

CCL 5:

Chemokine ligand 5

CCR 5:

Chemokine receptor type 5

CTGF:

CCN2 or connective tissue growth factor

DM:

Diabetes mellitus

DPP:

Dipeptidyl peptidase

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinases

FFA:

Free fatty acids

Foxp3:

Forkhead box

G6PD:

Glucose-6-phosphate dehydrogenase

GIP:

Gastric inhibitory polypeptide

GLP:

Glucagon-like peptide

GLUT:

Glucose transporter

GSK 3:

Glycogen synthase kinase

HbA1C:

Glycosylated hemoglobin

HDL:

High-density lipoproteins

Hep G2:

Human hepatocyte carcinoma cell line

HFD:

High-fat diet

HGP:

Hepatic glucose production

HMG-coA:

3-Hydroxy-3-methyl-glutaryl-Coa reductase

ICAM:

Intercellular adhesion molecule

IDF:

International Diabetes Federation

IKK:

IκB kinase

IL-6:

Interleukin 6

IRS-1:

Insulin receptor substrate-1

JAK:

Janus kinase

JNK-c:

Jun N-terminal kinases

LDH:

Lactate dehydrogenase

LDL:

Low-density lipoproteins

MAPK:

Mitogen-activated protein kinases

MCP-1:

Monocyte chemoattractant protein-1

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP:

Nod-like receptor protein

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

PCSK9:

Pro-protein convertase subtilisin-kexin type 9

PI3K:

Phosphoinositide 3-kinases

PKC:

Protein kinase C

PPAR:

Peroxisome proliferated-activated receptor

PTP-IB:

Protein tyrosine phosphatase 1B

RAAS:

Renin angiotensin aldosterone system

RAGE:

Receptor for advanced glycation end products

ROS:

Reactive oxygen species

S1P:

Sphingosine-1-phosphate

SIRT1-NAD:

dependent protein deacetylase sirtuin-1

SphK1:

Sphingosine kinase 1

SREBP:

Sterol regulatory element binding proteins

STAT:

Signal transducers and activators of transcription

STZ:

Streptozotocin

T2DM:

Type 2 diabetes mellitus

TBARS:

Thiobarbituric acid-reactive substances

TG:

Triglycerides

TGF:

Tumor growth factor

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

VLDL:

Very-low-density lipoprotein

α-SMA:

Alpha-smooth muscle actin

References

  • Abraham TM, Pencina KM, Pencina MJ et al (2015) Trends in diabetes incidence: the Framingham heart study. Diabetes Care 38:482–487

    Article  PubMed  Google Scholar 

  • Abuohashish HM, Al-Rejaie SS, Al-Hosaini KA et al (2013) Alleviating effects of morin against experimentally-induced diabetic osteopenia. Diabetol Metab Syndr 5(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahad A, Ganai AA, Mujeeb M et al (2014b) Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 279(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Ahad A, Mujeeb M, Ahsan H et al (2014a) Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 106:101–110

    Article  CAS  PubMed  Google Scholar 

  • Amalan V, Vijayakumar N, Indumathi D et al (2016) Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach. Biomed Pharmacother 84:230–236

    Article  CAS  PubMed  Google Scholar 

  • Atkinson LL, Kozak R, Kelly SE et al (2003) Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab 284:E923–E930

    Article  CAS  PubMed  Google Scholar 

  • Bak EJ, Kim J, Choi YH et al (2014) Wogonin ameliorates hyperglycemia and dyslipidemia viaPPARα activation in db/db mice. Clin Nutr 33:156–163

    Article  CAS  PubMed  Google Scholar 

  • Baron AD, Schaeffer L, Shragg P et al (1987) Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36:274–283

    Article  CAS  PubMed  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Bettaieb A, Hosein E, Chahed S et al (2015) Decreased adiposity and enhanced glucose tolerance in Shikonin treated mice. Obesity (Silver Spring) 23(11):2269–2277

    Article  CAS  Google Scholar 

  • Bharti S, Rani N, Krishnamurthy B et al (2014) Preclinical evidence for the pharmacological actions of Naringin: a review. Planta Med 80:437–451

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar SK, Föller M, Gu S et al (2009) Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteres isora. J Ethnopharmacol 126:386–396

    Article  CAS  PubMed  Google Scholar 

  • Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10

    Article  CAS  PubMed  Google Scholar 

  • Bose M, Lambert JD, Ju J et al (2008) The major green tea polyphenol, (−)-Epigallocatechin-3-Gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr 138:1677–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  PubMed  Google Scholar 

  • Chang CI, Tseng HI, Liao YW et al (2011) In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24. Food Chem 125:521–528

    Article  CAS  Google Scholar 

  • Chen N, Bezzina R, Hinch E et al (2009) Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr Res 29:784–793

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Chen JB, Chen WY et al (2012a) Effects of quercetin on nuclear factor-κB p65 expression in renal ubiquitin-proteasome system of diabetic rats. Zhonghua Nei Ke Za Zhi 51(6):460–465

    CAS  PubMed  Google Scholar 

  • Chen S, Jiang H, Wu X et al (2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediat Inflamm:9340637

    Google Scholar 

  • Chen S, Li J, Zhang Z et al (2012b) Effects of resveratrol on the amelioration of insulin resistance in KKAy mice. Can J Physiol Pharmacol 90:237–242

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Hsu MJ, Sheu JR et al (2013) Andrographolide, a novel NF- κ B inhibitor, induces vascular smooth muscle cell apoptosis via a Ceramide-p47phox-ROS Signaling Cascade. Evid Based Complement Alternat Med 2013:821813

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheong SH, Furuhashi K, Ito K et al (2014) Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6myocytes and improves glucose homeostasis in type II diabetic model mice. J Nutr Biochem 25:136–143

    Article  CAS  PubMed  Google Scholar 

  • Choi R, Kim BH, Naowaboot J et al (2011) Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp Mol Med 43:676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins QF, Liu HY, Pi J et al (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5’-AMP-activated protein kinase. J Biol Chem 282:30143–30149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consolim-Colombo FM, Sangaleti CT, Costa FO et al (2017) Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial. JCI Insight 2(14):pii: 93340

    Article  Google Scholar 

  • Constantin RP, Constantin J, Pagadigorria CL et al (2010) The actions of fisetin on glucose metabolism in the rat liver. Cell Biochem Funct 281:49–58

    Google Scholar 

  • Cui L, Liu M, Chang X et al (2016) The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice. Biomed Pharmacother 81:111e119

    Article  Google Scholar 

  • Dandona P, Thusu K, Cook S et al (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347(8999):444–445

    Article  CAS  PubMed  Google Scholar 

  • Dar A, Faizi S, Naqvi S et al (2005) Analgesic and antioxidant activity of Mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28:596–600

    Article  CAS  PubMed  Google Scholar 

  • DeFronzo RA (1988) Lilly Lecture: the triumvirate: -cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 37:667–687

    Article  CAS  PubMed  Google Scholar 

  • Dehmlow C, Erhard J, de Groot H (1996) Inhibition of kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 23:749–754

    Article  CAS  PubMed  Google Scholar 

  • Demidowich AP, Davis AI, Dedhia N et al (2016) Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation. Med Hypotheses 92:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, He K, Ye X et al (2012) Saponin rich fractions from Polygonatum odoratum (mill.) druce with more potential hypoglycemic effects. J Ethnopharmacol 141:228–233

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Li J, Song B et al (2014a) Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway. J Pharmacol Exp Ther 351:474–483

    Article  PubMed  Google Scholar 

  • Ding Y, Shi X, Shuai X et al (2014b) Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. J Biomed Res 28:292–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Shao J, Gu P et al (2012) Improvement of glucose tolerance by Rhein with restored early-phase insulin secretion in db/db mice. J Endocrinol Investig 35:607–612

    Article  CAS  Google Scholar 

  • Duang XY, Wang Q, Zhou XD et al (2011) Mangiferin: a possible strategy for periodontal disease to therapy. Med Hypotheses 76:486–488

    Article  CAS  PubMed  Google Scholar 

  • Eid HM, Nachar A, Thong F et al (2015) The molecular basis of the anti-diabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 11:74–81

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Azab MF, Attia FM, El-Mowafy AM (2011) Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines. Eur J Pharmacol 658:41–48

    Article  CAS  PubMed  Google Scholar 

  • Elekofehinti OO, Kamdem JP, Kade IJT et al (2013) Hypoglycemic anti-per-oxidative and antihyperlipidemic effects of saponins from Solanum anguivi lam. Fruits in alloxan-induced diabetic rats. S Afr J Bot 88:56–61

    Article  CAS  Google Scholar 

  • Fang-Rong C, Hong-Xin C, Ji-Li F et al (2019) Ameliorative effect and mechanism of the purified Anthraquinone-glycoside preparation from Rheum Palmatum L. on type 2 diabetes mellitus. Molecules 24(8):1454

    Article  Google Scholar 

  • Fernandes AA, Novelli EL, Okoshi K et al (2010) Influence of Rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 64:214–219

    Article  PubMed  Google Scholar 

  • Forcheron F, Basset A, Abdallah P et al (2009) Diabetic cardiomyopathy: effects of fenofibrate and metformin in an experimental model—the Zucker diabetic rat. Cardiovasc Diabetol 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Luo J, Jia Z et al (2014) Baicalein protects against type 2 diabetes via promoting islet beta-cell function in obese diabetic mice. Int J Endocrinol 2014:846742

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujioka K (2007) Pathophysiology of type 2 diabetes and the role of incretin hormones and beta-cell dysfunction. JAAPA Suppl:3–8

    Google Scholar 

  • Gao Y, Zhang M, Wu T et al (2015) Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem 63:6019–6026

    Article  CAS  PubMed  Google Scholar 

  • Gastaldelli A, Miyazaki Y, Pettiti M et al (2004) Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J Clin Endocrinol Metab 89:3914–3921

    Article  CAS  PubMed  Google Scholar 

  • Gharib A, Faezizadeh Z, Godarzee M (2013) Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med 79:1599–1604

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A (2017) Mechanisms of antidiabetic effects of flavonoid Rutin. Biomed Pharmacother 96:305–312

    Article  CAS  PubMed  Google Scholar 

  • Giles TD, Miller AB, Elkayam U et al (2008) Pioglitazone and heart failure: results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail 14:445–452

    Article  CAS  PubMed  Google Scholar 

  • Golay A, Felber JP, Jequier E et al (1988) Metabolic basis of obesity and noninsulin-dependent diabetes mellitus. Diabetes Metab Rev 4(8):727–747

    Article  CAS  PubMed  Google Scholar 

  • Goodpaster BH, Thaete FL, Kelley DE (2000) Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr 71:885–892

    Article  CAS  PubMed  Google Scholar 

  • Grindlay D, Reynolds T (1986) The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 16(2e3):117e151

    Google Scholar 

  • Guan L, Feng H, Gong D et al (2013) Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. Exp Gerontol 48:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Ghosal S, Chattopadhyay U (1996) Antitumor, immunomodulatory and anti-HIV effect of Mangiferin, a naturally occurring glucosyl xanthone. Chemotherapy 42:443–451

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Dongare S, Mathur R et al (2015) Genistein ameliorates cardiac inflammation and oxidative stress in Streptozotocin-induced diabetic cardiomyopathy in rats. Mol Cell Biochem 408(1-2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Hadden DR, Montgomery DA, Skelly RJ et al (1975) Maturity onset diabetes mellitus: response to intensive dietary therapy. Br Med J 2:276–278

    Article  Google Scholar 

  • Häkkinen SH, Kärenlampi SO, Heinonen IM et al (1999) Content of the flavonols quercetin, myricetin, and kaempferolin 25 edible berries. J Agric Food Chem 47(6):2274–2279

    Article  PubMed  Google Scholar 

  • He HJ, Wang GY, Gao Y et al (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3:94–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584

    Article  CAS  PubMed  Google Scholar 

  • Hemalatha T, Pulavendran S, Balachandran C et al (2010) Arjunolic acid: a novel phytomedicine with multifunctional therapeutic applications. Indian J Exp Biol 48:238–247

    CAS  PubMed  Google Scholar 

  • Hemmeryckx B, Hoylaerts MF, Gallacher DJ et al (2013) Does rosiglitazone affect adiposity and cardiac function in genetic diabetic mice. Eur J Pharmacol 700:23–31

    Article  CAS  PubMed  Google Scholar 

  • Hemmeryckx B, Swinnen M, Gallacher DJ et al (2014) Effect of Sitagliptin treatment on metabolism and cardiac function in genetic diabetic mice. Eur J Pharmacol 723:175–180

    Article  CAS  PubMed  Google Scholar 

  • Hermenean A, Mariasiu T, Navarro-González I et al (2017) Hepatoprotective activity of Chrysin is mediated through TNF-a in chemically-induced acute liver damage: an in vivo study and molecular modeling. Exp Ther Med 13:1671–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CY, Shih HY, Chia YC et al (2014) Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol. Nutr. Food Res 58:1168–1176

    CAS  Google Scholar 

  • Huang YC, Chang WL, Huang SF et al (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 648:39–49

    Article  CAS  PubMed  Google Scholar 

  • Hunyadi A, Martins A, Hsieh TJ et al (2012) Chlorogenic acid and Rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One 7(11):e50619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihara Y, Toyokuni S, Uchida K et al (1999) Hyperglycemia causes oxidative stress in pancreatic β-cells of GK rats, a model of type 2 diabetes. Diabetes 48(4):927–932

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Bansal MK, Dalvi R et al (2014) Protective effect of Diosmin against diabetic neuropathy in experimental rats. J Integr Med 12:35–41

    Article  PubMed  Google Scholar 

  • Jeong KJ, Kim DY, Quan HY et al (2014) Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice. Fitoterapia 93:150–162

    Article  CAS  PubMed  Google Scholar 

  • Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12:144–153

    Article  CAS  PubMed  Google Scholar 

  • Jia S, Hu Y, Zhang W et al (2015) Hypoglycemic and hypolipidemic effects of Neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice. Food Funct 6:878–886

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Yang Y, Jin H et al (2008) Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNF-alpha in 3T3-L1 adipocytes. Phytother Res 22(11):1434–1439

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Choi HS, Kim DH et al (2008) Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells. J Med Food 11:429–434

    Article  CAS  PubMed  Google Scholar 

  • Jung UJ, Lee MK, Jeong KS et al (2004) The hypoglycemic effects of hesperidin and Naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 134:2499–2503

    Article  CAS  PubMed  Google Scholar 

  • Jung UJ, Lee MK, Park YB et al (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318:476–483

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy N, Ashok Kumar N (2014) Protective effect of bioflavonoid Myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in Streptozotocin-cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 279:173–185

    Article  CAS  PubMed  Google Scholar 

  • Kang MS, Hirai S, Goto T et al (2009) Dehydroabietic acid, a diterpene improves diabetes and hyperlipidemia in obese diabetic KK-ay mice. Biofactors 35(5):442–448

    Article  CAS  PubMed  Google Scholar 

  • Kashyap S, Belfort R, Gastaldelli A et al (2003) A sustained increase in plasma free fatty acids impairs insulin secretion in non-diabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52:2461–2474

    Article  CAS  PubMed  Google Scholar 

  • Keller AC, Ma J, Kavalier A et al (2011) Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 19:32–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Jung SN, Son KH et al (2007) Anti-diabetes and anti-obesity effect of Cryptotanshinone via activation of AMP-activated protein kinas. Mol Pharmacol 72:62–72

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Jang HJ, Martinez-Lemus LA et al (2012a) Activation of mTOR/p70S6 kinase by ANG II inhibits insulin stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab 302:E201–E208

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Hur HJ, Kwon DY et al (2012b) Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol 358:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Jin Y, Choi Y et al (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81:1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Quan HY, Jeong KJ et al (2014) Beneficial effect of betulinic acid on hyperglycemia via suppression of hepatic glucose production. J Agric Food Chem 62:434–442

    Article  CAS  PubMed  Google Scholar 

  • Klaus S, Pültz S, Thöne-Reineke C et al (2005) Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes Relat Metab Disord 29:615–623

    Article  CAS  Google Scholar 

  • Komajda M, McMurray JJ, Beck-Nielsen H et al (2010) Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J 31:824–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari K, Mathew BC, Augusti KT (1995) Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian J Biochem Biophys 32:49–54

    CAS  PubMed  Google Scholar 

  • Kwon DY, Kim YS, Ryu SY et al (2012) Platyconic acid, a saponin from platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. Eur J Nutr 51:529–540

    Article  CAS  PubMed  Google Scholar 

  • Lau YS, Tian XY, Mustafa MR et al (2013) Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4-oxidative stress cascade. Br J Pharmacol 170(6):1190–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Li H, Noh M et al (2016) Bavachin from Psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 adipocytes. Int J Mol Sci 17:527

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee HI, Seo KI et al (2014) Effects of ursolic acid on glucose metabolism, the polyol pathway and dyslipidemia in non-obese type 2 diabetic mice. Indian J Exp Biol 52:683–691

    PubMed  Google Scholar 

  • Lee KT, Jung TW, Lee HJ et al (2011) The antidiabetic effect of genosenoside Rb2 via activation of AMPK. Arch Pharm Res 34:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xu H, Zhu S et al (2013) Effects of Neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats. Brain Res Bull 90:79–87

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kang SW, Kim JL et al (2010) Isoliquiritigenin entails blockade of TGF-beta1-SMAD signaling for retarding high glucose-induced mesangial matrix accumulation. J Agric Food Chem 58(5):3205–3212

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lim SS, Lee ES et al (2011) Isoangustone a suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp Biol Med (Maywood) 236(4):435–444

    Article  CAS  Google Scholar 

  • Li Y, Yan H, Zhang Z et al (2015) Andrographolide derivative AL-1 improves insulin resistance through down-regulation of NF-κB signaling pathway. Br J Pharmacol 172(12):3151–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhen W, Yang Z et al (2006) Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a CAMP-dependent protein kinase pathway. Diabetes 55:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang S, Feng L et al (2013) Hypoglycemic and antioxidant activities of Paeonol and its beneficial effect on diabetic encephalopathy in Streptozotocin-induced diabetic rats. J Med Food 16:577–586

    Article  CAS  PubMed  Google Scholar 

  • Liu JY (2014) Catalpol protect diabetic vascular endothelial function by inhibiting NADPH oxidase. Zhongguo Zhong Yao Za Zhi 39(15):2936–2941

    CAS  PubMed  Google Scholar 

  • Liu Y, Fu X, Lan N et al (2014b) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li D, Zhang Y et al (2014a) Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. Am J Physiol Endocrinol Metab 306(8):E975–E988

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhu W, Shen CL et al (2012) Green tea polyphenols reduce body weight in rats by modulating obesity-related genes. PLoS One 7(6):e38332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Wang J, Wang T et al (2016) Recent progress on nanostructures for drug delivery applications. J Nanomater 2016:20

    Article  Google Scholar 

  • Ma H, Li SY, Xu P et al (2009) Advanced glycation end product(AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 13:1751–1764

    Article  PubMed  Google Scholar 

  • Maciel RM, Costa MM, Martins DB et al (2013) Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in Streptozotocin-induced diabetic rats. Res Vet Sci 95:389–397

    Article  CAS  PubMed  Google Scholar 

  • Magnone M, Ameri P, Salis A et al (2015) Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans. FASEB J 29:4783–4793

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud AM, Ashour MB, Abdel-Moneim A et al (2012) Hesperidin and Naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/Streptozotocin-induced type 2 diabetic rats. J Diabet Complications 26:483–490

    Article  Google Scholar 

  • Mao XY, Cao DF, Li X et al (2014) Huperzine a ameliorates cognitive deficits in Streptozotocin-induced diabetic rats. Int J Mol Sci 15:7667–7683

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuda M, Liu Y, Mahankali S et al (1999) Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 48:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Maulidiani, Shaari K, Paetz C, Stanslas J et al (2009) Naturally occurring labdane diterpene and benzofuran from Globba pendula. Nat Prod Commun 4(8):1031–1036

    CAS  PubMed  Google Scholar 

  • McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  PubMed  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  CAS  PubMed  Google Scholar 

  • Miller JA (1999) Impact of hyperglycemia on the renin angiotensin system in early human type 1 diabetes mellitus. J Am Soc Nephrol 10:1778–1785

    Article  CAS  PubMed  Google Scholar 

  • Miller JA, Floras JS, Zinman B et al (1996) Effect of hyperglycaemia on arterial pressure, plasma renin activity and renal function in early diabetes. Clin Sci (Lond) 90:189–195

    Article  CAS  Google Scholar 

  • Mirza AZ, Siddiqui FA (2014) Nano medicine and drug delivery: a mini review. Int Nano Lett 4:94

    Article  Google Scholar 

  • Misra HS, Khairnar NP, Barik A et al (2004) Pyrroloquinoline–quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett 578(1–2):26–30

    Article  CAS  PubMed  Google Scholar 

  • Misra HS, Rajpurohit YS, Khairnar NP (2012) Pyrroloquinoline–quinone and its versatile roles in biological processes. J Biosci 37(2):313–325

    Article  CAS  PubMed  Google Scholar 

  • Mohan S, Nandha Kumar L (2014) Role of various flavonoids: hypotheses on novel approach to treat diabetes. Iran J Med Hypotheses Ideas 8(1):1–6

    Article  CAS  Google Scholar 

  • Mozaffari MS, Allo S, Schaffer SW (1989) The effect of sulfonylurea therapy on defective calcium movement associated with diabetic cardiomyopathy. Can J Physiol Pharmacol 67:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Mubarak A, Hodgson JM, Considine MJ et al (2013) Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice. J Agric Food Chem 61:4371–4378

    Article  CAS  PubMed  Google Scholar 

  • Narendhirakannan RT, Subramanian S, Kandaswamy M (2006) Biochemical evaluation of anti diabetogenic properties of some commonly used Indian plants on Streptozotocin–induced diabetes in experimental rats. Clin Exp Pharmacol Physiol 33(12):1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Nekooeian AA, Khalili A, Khosravi MB (2014) Oleuropein offers cardio protection in rats with simultaneous type 2 diabetes and renal hypertension. Indian J Pharmacol 46(4):398–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Nirmala P, Ramanathan M (2011) Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharm 654:75–79

    Article  CAS  Google Scholar 

  • Ohno M, Shibata C, Kishikawa T et al (2013) The flavonoid Apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice. Sci Rep 3:2553

    Article  PubMed  PubMed Central  Google Scholar 

  • Park CH, Yokozawa T, Noh JS (2014) Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates diabetes-induced renal damage through the advanced glycation end product-related pathway in db/db mice. J Nutr 144(8):1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Parmar HS, Jain P, Chauhan DS et al (2012) DPP-IV inhibitory potential of Naringin: an in silico, in vitro and in vivo study. Diabetes Res Clin Pract 97:105–111

    Article  CAS  PubMed  Google Scholar 

  • Pferschy-Wenzig EM, Atanasov AG, Malainer C et al (2014) Identification of Isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J Nat Prod 77:842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poudyal H, Lemonakis N, Efentakis P et al (2017) Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: pharmacological and metabolism-based investigation. Pharmacol Res 117:32–45

    Article  CAS  PubMed  Google Scholar 

  • Prasath GS, Pillai SI, Subramanian SP (2014) Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol 740:248–254

    Article  CAS  PubMed  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet β cell failure in type 2 diabetes. J Clin Invest 116(7):1802–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu P, Wang XA, Salim M et al (2012) Baicalein, a natural product, selectively activating AMPK alpha (2) and ameliorates metabolic disorder in diet-induced mice. Mol. Cell Endocrinol 362:128–138

    Article  CAS  Google Scholar 

  • Punitha ISR, Shirwaikar A (2005) Antidiabetic activity of benzyl tetra isoquinoline alkaloid Berberine in Streptozotocin-nicotinamide induced type 2 diabetic rats. Diabetol Croat 34:117–128

    Google Scholar 

  • Qi Z, Xu Y, Liang Z et al (2015) Baicalein alters PI3K/Akt/GSK3 beta signaling pathway in rats with diabetes-associated cognitive deficits. Int J Clin Exp Med 8:1993–2000

    PubMed  PubMed Central  Google Scholar 

  • Qiang G, Yang X, Xuan Q et al (2014) Salvianolic acid a prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and Streptozotocin induced diabetic rats. Am J Chin Med 42(5):1183–1198

    Article  CAS  PubMed  Google Scholar 

  • Rossetti L, Giaccari A, DeFronzo RA (1990) Glucose toxicity. Diabetes Care 13:610–630

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Sen S, Chakraborti AS (2008) Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: implication for glycation-induced hemoglobin modification. Life Sci 82:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Safhi MM, Qumayri HM, Masmali AUM et al (2019) Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Arch Physiol Biochem 125(2):150–155

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Tsuchiya S (1988) Superoxide production from non-enzymatically glycated protein. FEBS Lett 236(2):406–410

    Article  CAS  PubMed  Google Scholar 

  • Saleh S, El-Maraghy N, Reda E et al (2014) Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by Mangiferin: role of adiponectin and TNF-α. An Acad Bras Cienc 86:1935–1948

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Tai T, Nunoura Y et al (2002) Dehydrotrametenolic acid induces pre adipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 25:81–86

    Article  PubMed  Google Scholar 

  • Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8:709–716

    Article  CAS  PubMed  Google Scholar 

  • Seo WD, Lee JH, Jia Y et al (2015) Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5. Bioorg Med Chem Lett 25(22):5237

    Article  CAS  PubMed  Google Scholar 

  • Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028

    Article  PubMed  Google Scholar 

  • Sharma S, Ali A, Ali J et al (2013) Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22(8):1063–1079

    Article  CAS  PubMed  Google Scholar 

  • Sheela N, Jose MA, Sathyamurthy D et al (2013) Effect of Silymarin on Streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. Iran J Kidney Dis 7(2):117–123

    PubMed  Google Scholar 

  • Smidt CR, Steinberg FM, Rucker RB (1991) Physiologic importance of pyrroloquinoline quinine. Proc Soc Exp Biol Med 197(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Smith YR, Adanlawo IG (2012) Hypoglycaemic effect of saponin from the root of Garcinia kola on alloxan–induced diabetic rats. J Drug Delivery Ther 2:9–12

    Article  Google Scholar 

  • Soetikno V, Sari FR, Veeraveedu PT et al (2011) Curcumin ameliorates macrophage infiltration by inhibiting NF-kappaB activation and proinflammatory cytokines in Streptozotocin induced-diabetic nephropathy. Nutr Metab 8:35

    Article  CAS  Google Scholar 

  • Song C, Ji Y, Zou G et al (2015) Tetrandrine down-regulates expression ofmiRNA-155 to inhibit signal-induced NF-kappa B activation in a rat model of diabetes mellitus. Int J Clin Exp Med 8:4024–4030

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Fan X, Guo Z et al (2017) Therapeutic effects of emodin in type 2 diabetes mellitus in KKAy mouse model. Int J Clin Exp Med 10(10):14408–14413

    Google Scholar 

  • Stanely Mainzen Prince P, Kannan NK (2006) Protective effect of Rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in Streptozotocin-induced diabetic rats. J Pharm Pharmacol 58(10):1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Stavniichuk R, Drel VR, Shevalye H et al (2011) Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation. Exp Neurol 230(1):106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stofkova A (2009) Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr Regul 43:157–168

    CAS  PubMed  Google Scholar 

  • Suchal K, Malik S, Khan SI et al (2017) Protective effect of Mangiferin on myocardial ischemia-reperfusion injury in Streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep 7:42027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunil C, Duraipandiyan V, Agastian P et al (2012) Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in Streptozotocin-induced diabetic rats. Food Chem Toxicol 50:4356–4363

    Article  CAS  PubMed  Google Scholar 

  • Tabák AG, Herder C, Rathmann W et al (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379(9833):2279–2290

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan MJ, Ye JM, Turner N et al (2008) Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 15:263–273

    Article  PubMed  Google Scholar 

  • Tiong SH, Looi CY, Arya A et al (2015) Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 102:182–188

    Article  CAS  PubMed  Google Scholar 

  • Tutino V, Orlando A, Russo F et al (2016) Hydroxytyrosol inhibits cannabinoid CB1 receptor gene expression in 3T3-L1 pre adipocyte cell line. J. Cell Physiol 231:483–489

    Article  CAS  Google Scholar 

  • Uemura T, Goto T, Kang MS et al (2010) Diosgenin, the main aglycon of fenugreek, inhibits LXRa activity in HepG2 cells and decreases plasma and hepatictriglycerides in obese diabetic mice. J Nutr 141:17–23

    Article  PubMed  Google Scholar 

  • Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 44:863–870

    Article  CAS  PubMed  Google Scholar 

  • Vaidya H, Prajapati A, Rajani M et al (2012) Beneficial effects of swertiamarin on dyslipidaemia in streptozotocin-induced type 2 diabetic rats. Phytother Res 26(8):1259–1261

    Article  CAS  PubMed  Google Scholar 

  • Vanitha P, Uma C, Suganya N et al (2014) Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in Streptozotocin-induced diabetic rats. Environ Toxicol Pharmacol 37:326–335

    Article  CAS  PubMed  Google Scholar 

  • Verma S, McNeill JH (1994) Metformin improves cardiac function in isolated Streptozotocin-diabetic rat hearts. Am J Phys 266(2 Pt 2):H714–H719

    CAS  Google Scholar 

  • Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 12:60

    Article  Google Scholar 

  • Wang HL, Li CY, Zhang B et al (2014) Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators. Int J Mol Sci 15:9016–9035

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Kusudo T, Takeuchi T et al (2013a) Evodiamine inhibits insulin-stimulated mTOR-S6K activation and IRS-1 serine phosphorylation in adipocytes and improves glucose tolerance in obese/diabetic mice. PLoS One:8e83264

    Google Scholar 

  • Wang W, Wang C, Ding XQ et al (2013b) Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol 169:1352–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu R, Zhang W et al (2013c) Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol 376:70–80

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ye J, Li J et al (2019) Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating pro-protein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc Diabetol 15:19

    Article  Google Scholar 

  • Wei Y, Gao J, Qin L et al (2017) Tanshinone I alleviates insulin resistance in type 2 diabetes mellitus rats through IRS-1pathway.Biomed. Pharmacotherapy 93:352–358

    Article  CAS  Google Scholar 

  • Wilson EA, Hadden DR, Merrett JD et al (1980) Dietary management of maturity onset diabetes. Br Med J 3:1367–1369

    Article  Google Scholar 

  • Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187

    Article  CAS  PubMed  Google Scholar 

  • Wu JB, Kuo YH, Lin CH et al (2014) Tormentic acid, a major component of suspension cells of Eriobotrya japonica, suppresses high-fat diet-induced diabetes and hyperlipidemia by glucose transporter 4 and AMP-activated protein kinase phosphorylation. J Agric Food Chem 62:10717–10726

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Vats V, Dhunnoo Y et al (2002) Hypoglycemic and anti-hyperglycemic activity of Murraya koenigii leaves in diabetic rats. J Ethnopharmacol 82(2-3):111–116

    Article  CAS  PubMed  Google Scholar 

  • Yamabe N, Noh JS, Park CH et al (2010) Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur J Pharmacol 648(1-3):179–187

    Article  CAS  PubMed  Google Scholar 

  • Yang LP, Sun HL, Wu LM et al (2009) Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci 50:2319–2327

    Article  PubMed  Google Scholar 

  • Yang W, She L, Yu K et al (2016) Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model. Mol Med Rep 14:3277–3284

    Article  CAS  PubMed  Google Scholar 

  • Yokozawa T, Kim HY, Cho EJ et al (2002) Antioxidant effects of isorhamnetin 3, 7-di-O-beta-Dglucopyranoside isolated from mustard leaf (Brassica juncea) in rats with Streptozotocin-induced diabetes. J Agric Food Chem 50:5490–5495

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura Y, Nishii S, Zaima N et al (2013) Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic PPAR-a in obese, diabetic KK-A(y) mice. Biochem Biophys Res Commun 434:486–491

    Article  CAS  PubMed  Google Scholar 

  • Zeng XY, Wang H, Bai F et al (2015) Identification of Matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol 172:4303–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BB, Moller DE (2000) New approaches in the treatment of type 2 diabetes. Curr Opin Chem Biol 4(4):461–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang WY, Lee JJ, Kim Y et al (2012) Effect of Eriodictyol on glucose uptake and insulin resistance in vitro. J Agric Food Chem 60:7652–7658

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang G, Gurley EC et al (2014) Flavonoid apigenin inhibits lipo-polysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 9(9):e107072

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Shi D, Li T et al (2015) Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro. Clin Exp Pharmacol Physiol 42(9):988–998

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Shu G, Yang Z et al (2012) Antidiabetic effect of total saponins from Entada phaseoloides (L.)Merr. in type 2 diabetic rats. J Ethnopharmacol 139:814–821

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Zhu S, Chang S et al (2013) Protective effects of chronic resveratrol treatment on vascular inflammatory injury in Streptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. Eur J Pharmacol 720:147–157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, T., Chaki, R., Ghosh, N. (2021). Pharmacology and Mechanisms of Natural Medicine in Treatment of Type 2 Diabetes Mellitus. In: Mandal, S.C., Chakraborty, R., Sen, S. (eds) Evidence Based Validation of Traditional Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-15-8127-4_49

Download citation

Publish with us

Policies and ethics