Skip to main content

Biosorption: An Eco-Friendly Technology for Pollutant Removal

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 26))

Abstract

Water is the most important resource and crucial for all the living being on earth. Industrial and agricultural expansion generates a lot of wastes that contaminate water resources of the earth. These contaminated waste water threatens the human health and ecosystem. Numerous conventional and eco-friendly methods have been implemented to address water pollution. Amongst various methods, biosorption process emerged as unique method for the removal of persistent, toxic pollutant from the industrial waste water. In biosorption process live or dead microbial species like bacteria, fungi, algae and agricultural wastes are used as biosorbent for the removal of potentially toxic pollutants like heavy metals, dye and polycyclic aromatic hydrocarbons. Biosorption is a complex process which involves physical and chemical binding, chelation, precipitation and complexation mechanism. Researches demonstrate that study of biosorption kinetic model is important in designing industrial-scale biosorption process. Various operating parameters such as pH, temperature, biosorbent dose, and agitation speed are important in optimizing biosorption process. Further, this chapter also reviews the desorption process which makes the biosorption process more economical due to the recovery of sorbate molecule from the loaded biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Abdel AAM, Ammar NS, Abdel-Ghafar HH, Ali RK (2013) Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J Adv Res 4:367–374

    Article  CAS  Google Scholar 

  • Abdia O, Kazemia M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    CAS  Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1(1):19–26

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmed I, Iqbal HMN, Dhama K (2017) Enzyme-based biodegradation of hazardous pollutants – an overview. J Exp Biol Agric Sci 5:402–411

    Article  CAS  Google Scholar 

  • Aksu Z (1992) The biosorption of Cu(II) by C. vulgaris and Z. ramigera. Environ Tech 13(1):579–586

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Alhakawati MS, Banks CJ (2004) Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam. J Environ Manag 72(4):195–204

    Article  CAS  Google Scholar 

  • Ali A, Al-Homaidan HJ, Al-HouriAA A-HGE, Nadine MSM (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7(1):57–62

    Article  CAS  Google Scholar 

  • Alluri HK, Ronda SR, Setalluri VS, Bondili JS, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6:2924–2931

    Article  CAS  Google Scholar 

  • Azhar W, Iram S (2014) Kinetics, equilibrium and thermodynamics studies on biosorption of heavy metals by fungal biomass. Int J Eng Sci Emerg Technol 7(3):693–700

    Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524

    Article  CAS  PubMed  Google Scholar 

  • Barrios-Estrada C, de-Jesus-Rostro-Alanis M, Munoz-Gutierrez BD, Iqbal HMN, Kannan S, Parra-Saldivar R (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation – a review. Sci Total Environ 612:1516–1531

    Article  CAS  PubMed  Google Scholar 

  • Bayramoglu G, Yakup AM (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresour Technol 100(1):186–193

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements – a review. Mar Drugs 16:65. https://doi.org/10.3390/md16020065

    Article  CAS  PubMed Central  Google Scholar 

  • Blazquez G, Martín-Lara MA, Tenorio G, Calero M (2011) Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: equilibrium, kinetics and thermodynamic study. Chem Eng J 168:170–177

    Article  CAS  Google Scholar 

  • Borro DM, Fein JB (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of gram negative bacteria: testing non-eletrostatic, diffuse, and triple-layer models. J Colloid Interface Sci 286:110–126

    Article  CAS  Google Scholar 

  • Boudechiche N, Mokaddem H, Sadaoui Z, Trari M (2016) Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): characterization, equilibrium, kinetic and thermodynamic studies. Int J Ind Chem 7:167–180

    Article  CAS  Google Scholar 

  • Bueno BYM, Torem ML, Molina F, deMesquita LMS (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21(1):65–75

    Article  CAS  Google Scholar 

  • Castro KC, Cossolin AS, OliveiradosReis HC, deMorais EB (2017) Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Braz Arch Biol Technol 60. https://doi.org/10.1590/1678-4324-2017160101

  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135–138

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Cima-Mukul CA, Abdellaoui Y, Mohamed A, Joel V, Arlette AS, Jesus ABZ (2019) Eco-efficient biosorbent based on leucaena leucocephala residues for the simultaneous removal of Pb(II) and Cd(II) ions from water system: sorption and mechanism. Bioinorg Chem Appl. https://doi.org/10.1155/2019/2814047

  • Costa ACA, Leite SGF (1991) Metals biosorption by sodium alginate immobilized Chiarella homosphaera cells. Biotechnol Lett 13:555–562

    Article  Google Scholar 

  • Dabrowski A, Hubicki Z, Podko-scielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  CAS  PubMed  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491

    Article  CAS  PubMed  Google Scholar 

  • El-Sikaily A, ElNemr A, Khaled A (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168:707–714

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2):109–119

    Article  CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gadd GM, DeRome L (1988) Biosorption of copper by fungal melanine. Appl Microbiol Biotechnol 29(6):610–617

    Article  CAS  Google Scholar 

  • Garcia-Mendieta A, Olguín MT, Solache-Rios M (2012) Biosorption properties of green tomato husk (Physalis philadelphica lam) for iron, manganese and iron–manganese from aqueous systems. Desalination 284:167–174

    Article  CAS  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga, Chlorella salina. Appl Microbiol Biotechnol 37:270–276

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2005) Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 17:253–256

    Google Scholar 

  • Huang C, Huang C, Morehart AL (1990) The removal of copper from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res 24:433–439

    Article  CAS  Google Scholar 

  • Ibrahim WM (2011) Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater 192(3):1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim WM, Hassan AF, Azab YA (2016) Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt J Basic Appl Sci 3(3):241–249

    Article  Google Scholar 

  • Izabela M, Katarzyna C, Witek-Krowiak A (2013) State of the art for the biosorption process – a review. Appl Biochem Biotechnol 170:1389–1416

    Article  CAS  Google Scholar 

  • Jaikumar V, Ramamurthi V (2009) Effect of biosorption parameters kinetics isotherm and thermodynamics for acid green dye biosorption from aqueous solution by brewery waste. Int J Chem 1(1):2–12

    Article  Google Scholar 

  • Jalali-Rad R, Ghafourian H, Asef Y, Dalir ST, Sahafipour MH, Gharanjik BM (2004) Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications. J Hazard Mater 116:125–134

    Article  CAS  PubMed  Google Scholar 

  • Jayaram K, Prasad MNV (2009) Removal of Pb(II) from aqueous solution by seed powder of Prosopis juliflora DC. J Hazard Mater 169:991–997

    Article  CAS  PubMed  Google Scholar 

  • Jie D, BaoLiang C, LiZhong Z (2013) Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Chin Sci Bull 58(6):613–621

    Article  CAS  Google Scholar 

  • Jinsong H, Paul JC (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions: mini review. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  PubMed  Google Scholar 

  • Laxmi SRKK, Vinay KC, Sudhamani M (2018) Application of biosorption for removal of heavy metals from wastewater. Biosorption 18:69. https://doi.org/10.5772/intechopen.77315

    Article  Google Scholar 

  • Liu C, Ngo HH, Guo W (2012) Watermelon rind: agro-waste or superior biosorbent? Appl Biochem Biotechnol 167:1699–1715

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Lazaro N, Morales S, Marques A (2002) Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: a comparative study. Water Air Soil Pollut 135(4):157–172

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Helena MVM, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180:347–353

    Article  CAS  PubMed  Google Scholar 

  • Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2008) Characterization of the biosorption of cadmium, lead and copper with the brown algae Fucus vesiculosus. J Hazard Mater 158(3):316–323

    Article  CAS  PubMed  Google Scholar 

  • Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521

    Article  CAS  PubMed  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process – a review. Appl Biochem Biotechnol 170:1389–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrvcic J, Stanzer D, Solic E, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28:2771–2782

    Article  CAS  PubMed  Google Scholar 

  • Muraleedharan TR, Venkobachar C (1990) Mechanism of biosorption of copper(II) by Ganoderma lucidum. Biotechnol Bioeng 35:320–325

    Article  CAS  PubMed  Google Scholar 

  • Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  CAS  PubMed  Google Scholar 

  • Nourbakhsh M, Sag Y, Ozer D, Aksu Z, Kustal T, Caglar A (1994) A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters. Process Biochem 29:1–5

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540

    Article  CAS  PubMed  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Patel R, Chandel M (2015) Effect of pH and temperature on the biosorption of heavy metals by Bacillus licheniformis. Int J Sci Res 4:2272–2275

    Google Scholar 

  • Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol 97(18):2321–2329

    Article  CAS  PubMed  Google Scholar 

  • Pistorius A, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129

    Article  CAS  PubMed  Google Scholar 

  • Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110

    Article  CAS  Google Scholar 

  • Ramachandra TV, Ahalya N, Kanamadi RD (2005) Biosorption: techniques and mechanisms. CES Technical Report 110, Centre for Ecological Sciences, Indian Institute of Science, Bangalore

    Google Scholar 

  • Roane TM, Pepper IL (2001) Environmental microbiology. In: Roane TM, Pepper IL (eds) Microorganisms and metal pollutants, vol 17. Academic Press, Cambridge, pp 403–423

    Google Scholar 

  • Rudzinski W, Plazinski W (2010) How does mechanism of biosorption determine the differences between the initial and equilibrium adsorption states? Adsorption 16(5):351–357

    Article  CAS  Google Scholar 

  • Safa Y, Bhatti HN (2010) Factors affecting biosorption of direct dyes from aqueous solution. Asian J Chem 22(9):6625–6639

    CAS  Google Scholar 

  • Salam KA (2019) Towards sustainable development of microalgal biosorption for treating effluents containing heavy metals. Biofuel Res J 22:948–961

    Article  Google Scholar 

  • Saltabas O, Teker M, Konuk Z (2012) Biosorption of cationic dyes from aqueous solution by water hyacinth roots. Global NEST J 14:24–31

    Google Scholar 

  • Saraf S, Vaidya VK (2015) Comparative study of biosorption of textile dyes using fungal biosorbents. Int J Curr Microbiol Appl Sci 2:357–365

    Google Scholar 

  • Shamim S (2018) Biosorption of heavy metals. Biosorption 2:21–49

    Google Scholar 

  • Sheng PX, Ting YP, Chen JP (2007) Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single and multiple metal systems. Ind Eng Chem Res 46(8):2438–2444

    Article  CAS  Google Scholar 

  • Sheng PX, Wee KH, Ting YP, Chen JP (2008) Biosorption of copper by immobilized marine algal biomass. Chem Eng J 136(3):156–163

    Article  CAS  Google Scholar 

  • Stasiak M (1969) Application of biosorption process for renovation of waste waters at chemical industry. Przemysl Chemiczny 48:426–428

    CAS  Google Scholar 

  • Ting YP, Mittal AK (2002) Effect of pH on the biosorption of gold by a fungal biosorbent. Res Environ Biotechnol 3(4):229–239

    CAS  Google Scholar 

  • Ullrich AH, Smith MW (1951) The biosorption process of sewage and industrial waste. Sewage Ind Wastes 23(10):1248–1253

    CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Verma VK, Tewari S, Rai JPN (2008) Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour Technol 99:1932–1938

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manag 160:283–296

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metal by Saccharomyces cerevisiae. Biotechnol Adv 24:427–451

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu X, Liu G, Zhang Z, Cui B, Bai J, Zhang W (2019) Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol Environ Saf 173(331):338

    Google Scholar 

  • Witek-Krowiak A, Reddy DHK (2013) Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste–unusual isotherms and insights of binding mechanism. Bioresour Technol 127:350–357

    Article  CAS  PubMed  Google Scholar 

  • Yakup AM, Bayramoglu G (2005) Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids Surf A 253:203–211

    Article  CAS  Google Scholar 

  • Yang L, Chen JP (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour Technol 99(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu H, Qu J, Paul CJ (2011) Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. Bioresour Technol 102(3):2821–2828

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Weng CH (2006) Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge. Chemosphere 65:88–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lu L, Zhao H, Jin M, Lu T, Lin J (2018) Application of Klebsiella oxytoca biomass in the biosorptive treatment of PAH-bearing wastewater: effect of PAH hydrophobicity and implications for prediction. Water 10:675. https://doi.org/10.3390/w10060675

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA (1998) The biosorption process. Min Process Environ 43:361–386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gahlout, M., Prajapati, H., Tandel, N., Patel, Y. (2021). Biosorption: An Eco-Friendly Technology for Pollutant Removal. In: Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-15-7455-9_9

Download citation

Publish with us

Policies and ethics