Skip to main content

Groundwater Management for Irrigated Agriculture Through Geospatial Techniques

  • Chapter
  • First Online:
Geospatial Technologies for Crops and Soils

Abstract

Groundwater irrigation plays an important role in sustainable agricultural development through protective shield during droughts and dry spells and intensifying and diversifying of the cropping system. The measuring, monitoring, and modeling of groundwater availability, condition, and distribution are the major step to formulate a sustainable groundwater management plan for agricultural use. The conventional methods to manage groundwater are tedious and costly. However, the modernization of geospatial techniques, namely, remote sensing (RS), geographic information system (GIS), Global Positioning System (GPS), etc., along with differential proximity sensing has enabled groundwater management both spatially and temporally. It can help in surveying, analyzing, detecting, differentiating, characterizing, mapping, monitoring, and modeling of the groundwater quantity, quality, distribution, extent, and association of groundwater resources. The major interventions of geospatial techniques in groundwater management are groundwater quality assessment, spatial zonation for irrigation, groundwater prospects mapping, dynamicity of groundwater storage, saltwater intrusion, etc. These applications have made a huge impact on groundwater management for crop and land resources on a sustainable basis. The multiparametric approach of geospatial techniques can minimize the time, labor, and money and thereby enable quick decision-making for efficient water resources management. However RS data has some inherent limitations of spatial, spectral, and temporal resolution, which sometimes makes it difficult to understand and asses the groundwater condition. Still, it is very important for the areas/regions especially developing nations where data scarcity in terms of quantity and quality is often an obstacle for solving real-world water problems. This chapter highlights the various approaches of groundwater management for irrigated agriculture using geospatial tools and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIS:

Bureau of Indian Standards

DC:

Dharwar Craton

EC:

Electrical Conductivity

EMAG:

Earth Magnetic Anomaly Grid

EO:

Earth Observation

ERT:

Electrical Resistivity Tomography

EVI:

Enhanced Vegetation Index

FAO:

Food and Agricultural Organization

FCC:

False Color Composite

GIS:

Geographic Information System

GPR:

Ground Penetrating Radar

GRACE:

Gravity Recovery and Climate Experiment

GWP:

Groundwater Potential

IDW:

Inverse Distance Weighted

LISA:

Local Indicators of Spatial Autocorrelations

LULC:

Land Use and Land Cover

NDMI:

Normalized Difference Moisture Index

NDVI:

Normalized Difference Vegetation Index

NDWI:

Normalized Difference Water Index

NGLM:

National Geomorphological Layer Mapping

NRDWP:

National Rural Drinking Water Program

OECD:

Organization for Economic Co-operation and Development

RSC:

Residual Sodium Carbonate

SAR:

Sodium Absorption Ratio

SWIR:

Shortwave Infrared

TDS:

Total Dissolved Solids

TWS:

Total Water Storage

VNIR:

Visible and Near-Infrared

References

  • Abdalla F (2012) Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the Central Eastern Desert. Egypt J Afr Earth Sci 70:8–17

    Article  Google Scholar 

  • Adham MI, Jahan CS, Mazumder QH, Hossain MMA, Haque AM (2010) Study on groundwater recharge potentiality of Barind Tract, Rajshahi District, Bangladesh using GIS and remote sensing technique. J Geol Soc India 75(2):432–438

    Article  Google Scholar 

  • Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–a case of predicting potential zones of sustainable groundwater resources. J Hydrol 440:75–89

    Article  Google Scholar 

  • Agarwal R, Garg PK (2016) Remote sensing and GIS-based groundwater potential and recharge zones mapping using multicriteria decision-making technique. Water Res Manag 30(1):243–260

    Article  Google Scholar 

  • Ahmed JB II, Mansor S (2018) Overview of the application of geospatial technology to groundwater potential mapping in Nigeria. Arab J Geo 11(17):504

    Article  Google Scholar 

  • Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci Rev 136:289–300

    Article  Google Scholar 

  • Akpinar Ferrand E, Cecunjanin F (2014) Potential of rainwater harvesting in a thirsty world: a survey of ancient and traditional rainwater harvesting applications. Geogr Compass 8(6):395–413

    Article  Google Scholar 

  • Altchenko Y, Villholth KG (2015) Mapping irrigation potential from renewable groundwater in Africa–a quantitative hydrological approach. Hydrol Earth Syst Sci 19(2):1055–1067

    Article  Google Scholar 

  • Ambika AK, Wardlow B, Mishra V (2016) Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Scientific Data 3(1):1–4

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal:93–115

    Google Scholar 

  • Anselin L, Syabri I, Kho Y (2010) GeoDa: an introduction to spatial data analysis. In: Handbook of applied spatial analysis. Springer, Berlin, pp 73–89

    Chapter  Google Scholar 

  • APHA(American Public Health Association)/AWWA(American Water Works Association)/WEF(Water Environment Federation) (2005) Standard methods for the examination of water and wastewater, vol 21. pp 258–259

    Google Scholar 

  • Asadi SS, Vuppala P, Reddy MA (2007) Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India. Int J Environ Res Public Health 4(1):45–52

    Article  Google Scholar 

  • asterweb.jpl.nasa.gov

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for irrigation. FAO irrigation and drainage paper 20

    Google Scholar 

  • Ayers RS, Westcot DW (1994) Food, agriculture organization of the United Nations (FAO), water quality for agriculture. Irrigation and Drainage, Rome, Paper 29:77044–77042

    Google Scholar 

  • Barker R, Molle F (2005) Perspectives on Asian irrigation. In: Asian irrigation in transition: responding to challenges. Sage, New Delhi, pp 45–78

    Google Scholar 

  • Bates P, Han S, Alsdorf D, Seo K (2007) Influence of the Amazon floodwave on the intra-basin variability of GRACE water storage estimates. AGU Fall Meeting Abstracts

    Google Scholar 

  • Behailu BM, Pietilä PE, Katko TS (2016) Indigenous practices of water management for sustainable services: case of Borana and Konso, Ethiopia. Sage Open 6(4):2158244016682292

    Article  Google Scholar 

  • Bennett MR, Cassidy NJ, Pile J (2009) Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK. Geomorphology 104(3-4):218–229

    Article  Google Scholar 

  • Bennia A, Srivastav SK, Chatterjee RS (2013) Groundwater investigations using optical and microwave remote sensing data in Solani Watershed, India. In: Landslide science and practice. Springer, Berlin, pp 95–100

    Chapter  Google Scholar 

  • Beres M Jr, Haeni FP (1991) Application of ground-penetrating-radar Methods in Hydrogeologie Studies. Groundwater 29(3):375–386

    Article  Google Scholar 

  • bhuvan.nrsc.gov.in (Land Use and Land Cover Mapping 2015–2016 [LULC])

    Google Scholar 

  • bhuvan.nrsc.gov.in (National Geomorphological and Lineament mapping 2005 [NGLM])

    Google Scholar 

  • bhuvan.nrsc.gov.in (National Rural Drinking Water Programme, 2012[NRDWP])

    Google Scholar 

  • BIS (Bureau of Indian Standards) (2002) Tolerance limits of selected water quality parameters for inland surface water prescribed for different uses by Bureau of Indian Standards in India. Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Burke JJ (2002) Groundwater for irrigation: productivity gains and the need to manage hydro-environmental risk. In: Intensive use of groundwater challenges and opportunities. Balkema Publishers, Lisse, p 478

    Google Scholar 

  • Canavas C (2014) Public awareness and safeguarding traditional knowledge: challenges and conflicts in preserving and representing kārīz/kănérjĭng in Xinjiang, PR China. Water Sci Technol Water Supply 14(5):758–765

    Article  Google Scholar 

  • CGIAR Research Program on Water, Land and Ecosystems (WLE)(2017) Building resilience through sustainable groundwater use. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE) 12p (WLE Towards Sustainable Intensification: Insights and Solutions Brief 1)

    Google Scholar 

  • Chen X, Zhou W, Pickett ST, Li W, Han L (2016) Spatial-temporal variations of water quality and its relationship to land use and land cover in Beijing, China. Int J Environ Res Pub Health 13(5):449

    Article  Google Scholar 

  • Chinnasamy P, Hubbart JA, Agoramoorthy G (2013) Using remote sensing data to improve groundwater supply estimations in Gujarat, India. Earth Interact 17(1):1–7

    Article  Google Scholar 

  • Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Rem Sens 30(1):231–250

    Article  Google Scholar 

  • Closas A, Villholth KG (2016) Aquifer contracts: a means to solving groundwater over-exploitation in Morocco?. International Water Management Institute (IWMI)

    Google Scholar 

  • Corwin DL, Lesch SM (2005) Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Comput Electron Agric 1;46(1-3):103–33

    Google Scholar 

  • Custodio E, Bruggeman GA (1987) Groundwater problems in coastal areas. Studies and reports in hydrology (UNESCO)

    Google Scholar 

  • Dagan G, Zeitoun DG (1998) Free-surface flow toward a well and interface upconing in stratified aquifers of random conductivity. Water resources research 34(11):3191–3196

    Article  Google Scholar 

  • Dar IA, Sankar K, Dar MA (2010) Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. J Hydrol 394(3-4):285–295

    Article  Google Scholar 

  • Das PP, Sahoo HK, Mohapatra PP (2016) Hydrogeochemical evolution and potability evaluation of saline contaminated coastal aquifer system of Rajnagar, Odisha, India: a geospatial perspective. J Earth Syst Sci 125(6):1157–1174

    Article  Google Scholar 

  • Das S, Behera SC, Kar A, Narendra P, Guha S (1997) Hydrogeomorphological mapping in ground water exploration using remotely sensed data—a case study in Keonjhar district, Orissa. J Indian Soc Remote Sens 25(4):247–259

    Article  Google Scholar 

  • Das S, Gupta A, Ghosh S (2017) Exploring groundwater potential zones using MIF technique in semi-arid region: a case study of Hingoli district, Maharashtra. Spat Inf Res 25(6):749–756

    Article  Google Scholar 

  • Dasgupta S, Das IC, Subramanian SK, Dadhwal VK (2014) Space-based gravity data analysis for groundwater storage estimation in the Gangetic plain, India. Curr Sci 10:832–844

    Google Scholar 

  • de Menezes TJ, Menezes PD (2004) GPR exploration for groundwater in a crystalline rock terrain. J Appl Geophys 55(3–4):239–248

    Google Scholar 

  • Dhiman SC (2012) Aquifer systems of India. CGWB, Ministry of Water Resources, Gov of India, New Delhi

    Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. Published as a water science and engineering paper 4001, Department of Water Sciences and Engineering, University of California, Davis p 48

    Google Scholar 

  • Doolittle JA, Jenkinson B, Hopkins D, Ulmer M, Tuttle W (2006) Hydropedological investigations with ground-penetrating radar (GPR): estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils. Geoderma 131(3-4):317–329

    Article  Google Scholar 

  • Dutrieux LP, Jakovac CC, Latifah SH, Kooistra L (2016) Reconstructing land use history from Landsat time-series: case study of a swidden agriculture system in Brazil. Int J Appl Earth Obs Geoinf 47:112–124

    Google Scholar 

  • El-Naqa A, Hammouri N, Ibrahim K, El-Taj M (2009) Integrated approach for groundwater exploration in WadiAraba using remote sensing and GIS. Jordan J Civil Eng 3(3):229–243

    Google Scholar 

  • Elbeih SF (2015) An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng J 6(1):1–5

    Article  Google Scholar 

  • Ellyett CD, Pratt DA (1975) A review of the potential applications of remote sensing techniques to hydrogeological studies in Australia. Australian Government Publishing Service, Canberra

    Google Scholar 

  • FAO (1985) Water quality for agriculture. Irrigation and drainage paper no. 29. Rev. 1. Rome, 182 pp

    Google Scholar 

  • Feng W, Zhong M, Lemoine JM, Biancale R, Hsu HT, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49(4):2110–2118

    Article  Google Scholar 

  • Frind EO (1982) Seawater intrusion in continuous coastal aquifer-aquitard systems. Adv Water Res 5(2):89–97

    Article  Google Scholar 

  • Ganapuram S, Kumar GV, Krishna IM, Kahya E, Demirel MC (2009) Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw 40(7):506–518

    Article  Google Scholar 

  • Gao J (2002) Integration of GPS with remote sensing and GIS: reality and prospect. Photogr Eng Remote Sen 68(5):447–454

    Google Scholar 

  • Garrido A, Martínez-Santos P, Llamas MR (2006) Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience. Hydrogeol J 14(3):340

    Article  Google Scholar 

  • Giordano M (2006) Agricultural groundwater use and rural livelihoods in sub-Saharan Africa: a first-cut assessment. Hydrogeol J14(3):310–318

    Article  Google Scholar 

  • Gleick PH (1993) Water in crisis. Pacific Institute for Studies in Dev., Environment and Security. Stockholm Env. Institute 9:473

    Google Scholar 

  • Gopinathan P, Nandini CV, Parthiban S, Sathish S, Singh AK, Singh PK (2019) A geo-spatial approach to perceive the groundwater regime of hard rock terrain-a case study from Morappur area, Dharmapuri district, South India. Groundwater Sustain Devel 10:100316

    Article  Google Scholar 

  • Gunaalan K, Ranagalage M, Gunarathna MH, Kumari MK, Vithanage M, Srivaratharasan T, Saravanan S, Warnasuriya TW (2018) Application of geospatial techniques for groundwater quality and availability assessment: a case study in Jaffna Peninsula, Sri Lanka. ISPRS Int J Geo-Inform 7(1):20

    Article  Google Scholar 

  • Gunarathna MH, Nirmanee KG, Kumari MK (2016) Geostatistical analysis of spatial and seasonal variation of groundwater level: a comprehensive study in Malwathu Oya cascade-I, Anuradhapura, Sri Lanka. Int Res J Environ Sci 5(8):29–36

    Google Scholar 

  • Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X (2015) Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning 135:1–10

    Article  Google Scholar 

  • Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35(2):233–245

    Article  Google Scholar 

  • Gupta RP (2003) Remote Sens Geol. Heidelberg: Springer-Verlag 10:978-973

    Google Scholar 

  • Hamed Y, Ahmadi R, Hadji R, Mokadem N, Dhia HB, Ali W (2014) Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: use of geochemical and isotopic indicators. Desalination and Water Treatment 52(10-12):1990–1996

    Article  Google Scholar 

  • Haque S, Kannaujiya S, Taloor AK, Keshri D, Bhunia RK, Ray PK, Chauhan P (2020) Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater Sustain Dev 10:100337

    Article  Google Scholar 

  • Hartl M (1989) Qanats in the Najafabad valley. In: Qanats, kariz and khattara: traditional water systems in the Middle East and North Africa, pp 119–135

    Google Scholar 

  • Held R, Attinger S, Kinzelbach W (2005) Homogenization and effective parameters for the Henry problem in heterogeneous formations. Water Resour Res 41(11)

    Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Rem Sens Environ 92(4):475–482

    Article  Google Scholar 

  • Jalali M (2007) Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran. Environ Geol 52(6):1133–1149

    Article  Google Scholar 

  • Jensen JR (2016) Introductory digital image processing: a remote sensing perspective, 4th edn. Pearson Education, Glenview

    Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21(2):427–467

    Article  Google Scholar 

  • Jin S, Sader SA (2005) Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sen Environ 94(3):364–372

    Article  Google Scholar 

  • Jol HM, Smith DG (1991) Ground penetrating radar of northern lacustrine deltas. Can J Earth Sci 28(12):1939–1947

    Article  Google Scholar 

  • Jol HM, Smith DG (1995) Ground penetrating radar surveys of peatlands for oilfield pipelines in Canada. J Appl Geoph 34(2):109–123

    Article  Google Scholar 

  • Katko TS (2000) Water!: evolution of water supply and sanitation in Finland from the mid-1800s to 2000. Finnish Water and Waste Water Works Association, Helsinki

    Google Scholar 

  • Kerrou J, Renard P (2010) A numerical analysis of dimensionality and heterogeneity effects on advective dispersive seawater intrusion processes. Hydrogeol J 18(1):55–72

    Article  Google Scholar 

  • Knutsson G (2014) The role of springs in the history of Sweden. Vatten—J Water Manag Res 70:79–86

    Google Scholar 

  • Kolarkar AS, Murthy KN, Singh N (1983) Khadin—a method of harvesting water for agriculture in the Thar Desert. J Arid Environ 6(1):59–66

    Article  Google Scholar 

  • Lally HT, O'Connor I, Jensen OP, Graham CT (2019) Can drones be used to conduct water sampling in aquatic environments? A review. Science of the total environment 670:569–575

    Article  Google Scholar 

  • Leatherman SP (1987) Coastal geomorphological applications of ground-penetrating radar. J Coast Res:397–399

    Google Scholar 

  • Lee JY, Song SH (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52(7):1231–1242

    Article  Google Scholar 

  • Lee SH, Bagley ES (1972) Ground Water and Land Values in Southwestern Kansas a. Groundwater 10(6):27–36

    Article  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. Wiley, Hoboken

    Google Scholar 

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46(11)

    Google Scholar 

  • Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Res 25(5):1359–1386

    Google Scholar 

  • Machiwal D, Kumar S, Sharma GK, Jat SR, Dayal D (2018) Studying an indigenous rainwater harvesting system in Banni grassland of Kachchh, India. Indian J Tradit Knowl 17(3):559–568

    Google Scholar 

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3(2):189–196

    Article  Google Scholar 

  • Martinez Cortina L, Hernandez Mora N (2003) The role of groundwater in Spain's water policy. Water Int 28(3):313–320

    Article  Google Scholar 

  • Mir A, Piri J, Kisi O (2017) Spatial monitoring and zoning water quality of Sistan River in the wet and dry years using GIS and geostatistics. Comput Electron Agric 135:38–50

    Article  Google Scholar 

  • Muralitharan J, Palanivel K (2015) Groundwater targeting using remote sensing, geographical information system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Sci Inform 8(4):827–842

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188(1):44

    Article  Google Scholar 

  • Navalgund RR, Jayaraman V, Roy PS (2007) Remote sensing applications: an overview. Curr Sci 00113891:93(12)

    Google Scholar 

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Sci Rev 66(3-4):261–330

    Google Scholar 

  • Neal A, Roberts CL (2000a) Applications of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. Geol Soc Lond Spec Publ 175(1):139–171

    Article  Google Scholar 

  • Neal A, Roberts CL (2000b) Applications of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. Geol Soc Lond Spec Publ 175(1):139–171

    Article  Google Scholar 

  • Okoye MA, Koeln GT (2003) Remote sending (satellite) system technologies. Environmental Monitoring I, Encyclopedia of Life Support Systems (EOLSS)

    Google Scholar 

  • Oweis T, Hachum A, Bruggeman A (2004) Indigenous water-harvesting systems in West Asia and North Africa. Indigenous water-harvesting systems in West Asia and North Africa

    Google Scholar 

  • Ozdogan M, Gutman G (2008) A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens Environ 112(9):3520–3537

    Article  Google Scholar 

  • Palmer-Jones R (1999) Slowdown in agricultural growth in Bangladesh: neither a good description nor a description good to give. In: Sonar Bangla? Agricultural growth and agrarian change in West Bengal and Bangladesh. Sage, London, pp 92–136

    Google Scholar 

  • Parker D (1988) In: Stewert JB, Engman ET (eds) Innovations in geographic information systems, vol 3. Taylor and Francis, London

    Google Scholar 

  • Pervez MS, Budde M, Rowland J (2014) Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens Environ 149:155–165

    Article  Google Scholar 

  • Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Geol 55(3):467–475

    Article  Google Scholar 

  • Pratap K, Ravindran KV, Prabakaran B (2000) Groundwater prospect zoning using remote sensing and geographical information system: a case study in Dala-Renukoot area, Sonbhadra district, Uttar Pradesh. J Indian Soc Remote Sens 28(4):249–263

    Article  Google Scholar 

  • Preeja KR, Joseph S, Thomas J, Vijith H (2011) Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. J Indian Soc Remote Sens 39(1):83–94

    Article  Google Scholar 

  • Prithviraj N (1980) Geomorphic studies in Sarada river basin, Vishakapattanam District, Andhra Pradesh, India (Doctoral dissertation, Ph.D thesis (unpublished), Andhra University, Visakhapatnam, India)

    Google Scholar 

  • Ranagalage M, Estoque RC, Murayama Y (2017) An urban heat island study of the Colombo metropolitan area, Sri Lanka, based on Landsat data (1997–2017). ISPRS Int J Geo-Inform 6(7):189

    Article  Google Scholar 

  • Rao S, Divakara Rao V, Govil PK, Balaram V, PANTULU GC (1992) Geochemical and Sr-isotopic signatures in the 2.6 By Lepakshi granite, Anantapur district, Andhra Pradesh: implications for its origin and evolution. Indian Miner 46(3-4):289–302

    Google Scholar 

  • Rashid M, Lone MA, Ahmed S (2012) Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environ Monit Assess 184(8):4829–4839

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. LWW

    Google Scholar 

  • Robert M, Thomas A, Sekhar M, Badiger S, Ruiz L, Willaume M, Leenhardt D, Bergez JE (2017) Farm typology in the Berambadi Watershed (India): farming systems are determined by farm size and access to groundwater. Water 9(1):51

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002

    Article  Google Scholar 

  • Rose RS, Krishnan N (2009) Spatial analysis of groundwater potential using remote sensing and GIS in the Kanyakumari and Nambiyar basins, India. J Indian Soc Remote Sens 37(4):681–692

    Article  Google Scholar 

  • Saha R, Kumar GP, Pandiri M, Das IC, Rao PN, Reddy KS, Kumar KV (2018) Knowledge guided integrated geo-hydrological, geo-mathematical and GIS based groundwater draft estimation modelling in Budhan Pochampalli Watershed, Nalgonda District, Telangana State, India. Earth Sci India 11(4)

    Google Scholar 

  • Satapathy I, Syed TH (2015) Characterization of groundwater potential and artificial recharge sites in Bokaro District, Jharkhand (India), using remote sensing and GIS-based techniques. Environ Earth Sci 74(5):4215–4232

    Article  Google Scholar 

  • Sebben ML, Werner AD, Graf T (2015) Seawater intrusion in fractured coastal aquifers: a preliminary numerical investigation using a fractured Henry problem. Adv Water Res 85:93–108

    Article  Google Scholar 

  • Seeyan S, Merkel B, Abo R (2014) Investigation of the relationship between groundwater level fluctuation and vegetation cover by using NDVI for Shaqlawa Basin, Kurdistan Region-Iraq. J Geogr Geol 6(3):187

    Google Scholar 

  • Shaban A (2010) Support of space techniques for groundwater exploration in Lebanon. J Water Res Protect 2(5):469

    Article  Google Scholar 

  • Shah T (2010) Taming the anarchy: groundwater governance in South Asia. Routledge

    Google Scholar 

  • Shah T (2014) Groundwater governance and irrigated agriculture. Global Water Partnership (GWP), Stockholm

    Google Scholar 

  • Shah T, Molden D, Sakthivadivel R, Seckler D (2001) Global groundwater situation: opportunities and challenges. Econ Polit Wkly 36:4142–4150

    Google Scholar 

  • Sharma AK, Hubert-Moy L, Buvaneshwari S, Sekhar M, Ruiz L, Bandyopadhyay S, Corgne S (2018) Irrigation history estimation using multitemporal landsat satellite images: application to an intensive groundwater irrigated agricultural watershed in India. Remote Sens 10(6):893

    Article  Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrology and earth system sciences 14(10):1863–1880

    Article  Google Scholar 

  • Siebert S, Henrich V, Frenken K, Burke J (2013) Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany and Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Singh KV, Setia R, Sahoo S, Prasad A, Pateriya B (2015) Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int 30(6):650–661

    Article  Google Scholar 

  • Singh RA, Gupta RC (2002) Traditional land and water management systems of North-East hill region. Indian J Tradit Knowl 1(1):32–39

    Google Scholar 

  • Singhal BB, Gupta RP (2010) Applied hydrogeology of fractured rocks. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14(6):1029–1041

    Article  Google Scholar 

  • Sreedevi PD, Subrahmanyam K, Ahmed S (2005) Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeol J 13(3):534–543

    Article  Google Scholar 

  • Srivastava PK, Gupta M, Mukherjee S (2012a) Mapping spatial distribution of pollutants in groundwater of a tropical area of India using remote sensing and GIS. Appl Geomatics 4(1):21–32

    Article  Google Scholar 

  • Srivastava PK, Han D, Gupta M, Mukherjee S (2012b) Integrated framework for monitoring groundwater pollution using a geographical information system and multivariate analysis. Hydrol Sci J 57(7):1453–1472

    Article  Google Scholar 

  • Srivastava PK, Mukherjee S, Gupta M, Singh SK (2011) Characterizing monsoonal variation on water quality index of River Mahi in India using geographical information system. Water Quality, Exposure and Health 2(3-4):193–203

    Article  Google Scholar 

  • Stafford DB (ed) (1991) Civil engineering applications of remote sensing and geographic information systems. ASCE, New York

    Google Scholar 

  • Stan D, Stan-Kłeczek I (2014) Application of electrical resistivity tomography to map lithological differences and subsurface structures (Eastern Sudetes, Czech Republic). Geomorphology 221:113–123

    Article  Google Scholar 

  • Steenhuis TS, Kung KJ, Cathles LM (1990) Finding layers in the soil. Ground-penetrating radar as a tool in studies of groundwater contamination. Cornell Eng Quart 25(1):15–19

    Google Scholar 

  • Subrahmanyam M, Rao TP (2009) Interpretation of magnetic anomalies using some simple characteristic positions over tabular bodies. Explor Geophys 40(3):265–276

    Article  Google Scholar 

  • Swenson S, Wahr J, Milly PC (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39(8)

    Google Scholar 

  • Taghavi-Jeloudar M, Han M, Davoudi M, Kim M (2013) Review of ancient wisdom of Qanat, and suggestions for future water management. Environ Eng Res 18(2):57–63

    Article  Google Scholar 

  • Taylor PN, Chadwick B, Moorbath S, Ramakrishnan M, Viswanatha MN (1984) Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga Granite with special reference to the late Archean evolution of the Karnataka Craton, southern India. Precambrian Research 23(3-4):349–375

    Article  Google Scholar 

  • Teeuw RM (1995) Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeol J 3(3):21–30

    Article  Google Scholar 

  • Thakur JK, Singh SK, Ekanthalu VS (2017) Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Appl Water Sci 7(4):1595–1608

    Article  Google Scholar 

  • Thenkabail PS, Biradar CM, Noojipady P, Dheeravath V, Li Y, Velpuri M, Gumma M, Gangalakunta OR, Turral H, Cai X, Vithanage J (2009a) Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int J Remote Sens 30(14):3679–3733

    Article  Google Scholar 

  • Thenkabail PS, Dheeravath V, Biradar CM, Gangalakunta OR, Noojipady P, Gurappa C, Velpuri M, Gumma M, Li Y (2009b) Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sens 1(2):50–67

    Article  Google Scholar 

  • Thenkabail PS, Hanjra MA, Dheeravath V, Gumma M (2010) A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches. Remote Sens 2(1):211–261

    Article  Google Scholar 

  • Thenkabail PS, Schull M, Turral H (2005) Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens Environ 95(3):317–341

    Article  Google Scholar 

  • Thomas A, Sharma PK, Sharma MK, Sood A (1999) Hydrogeomorphological mapping in assessing ground water by using remote sensing data—a case study in lehra gaga block, sangrur district, Punjab. J Indian Soc Remote Sen 27(1):31

    Article  Google Scholar 

  • Tiwari VM, Wahr JM, Swenson S, Singh B (2011) Land water storage variation over Southern India from space gravimetry. Curr Sci 101:536–540

    Google Scholar 

  • Todd DK (1980) Groundwater hydrogeology, 2nd edn. Wiley, New York, p 537

    Google Scholar 

  • Tsur Y (1990) The stabilization role of groundwater when surface water supplies are uncertain: the implications for groundwater development. Water Resour Res 26(5):811–818

    Google Scholar 

  • Velpuri NM, Thenkabail PS, Gumma MK, Biradar C, Dheeravath V, Noojipady P, Yuanjie L (2009) Influence of resolution in irrigated area mapping and area estimation. Photogramm Eng Remote Sens 75(12):1383–1395

    Article  Google Scholar 

  • Villholth KG, Tøttrup C, Stendel M, Maherry A (2013) Integrated mapping of groundwater drought risk in the Southern African Development Community (SADC) region. Hydrogeology J 21(4):863–885

    Article  Google Scholar 

  • Vittala SS, Govindaiah S, Honne Gowda H (2006) Digital Elevation Model (DEM) for identification of groundwater prospective zones. J Indian Soc Remote Sens 34:305–310

    Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31(11)

    Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea level rise on sea water intrusion in coastal aquifers. Groundwater 47(2):197–204

    Article  Google Scholar 

  • Wilcox L (1955) Classification and use of irrigation waters. US Department of Agriculture

    Google Scholar 

  • www.cals.arizona.edu/OALS/ALN/aln51/ednote51.html

    Google Scholar 

  • www.cgwb.gov.in/District_Profile/AP/Ananthapur.pdf (Central Ground Water Board (2013) Brochure Anantapur District, Andhra Pradesh Southern Region, Hyderabad)

    Google Scholar 

  • www.cgwb.gov.in/MAP/CATEGON%202011.jpg (Central Ground Water Board, 2011)

    Google Scholar 

  • www.commons.wikimedia.org/wiki/File:Qanat-3.svg

    Google Scholar 

  • www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/irrigation-by-country

    Google Scholar 

  • www.geospatialworld.net (Devex and CRS, 2019).

  • www.ngdc.noaa.gov/geomag/emag2

    Google Scholar 

  • www.usgs.gov

    Google Scholar 

  • www.usgs.gov. Retrieved 2020-03-18 “Where is Earth’s Water?”

    Google Scholar 

  • Yaduvanshi A, Srivastava PK, Pandey AC (2015) Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India. Phys Chem Earth Parts A/B/C 83:14–27

    Article  Google Scholar 

  • Zhu T, Ringler C, Cai X (2007) Energy price and groundwater extraction for agriculture: exploring the energy-water-food nexus at the global and basin levels. In: International Conference of Linkages between Energy and Water Management for Agriculture in Developing Countries, Hyderabad, India

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, R., Mitran, T., Mukherjee, S., Das, I.C., Kumar, K.V. (2021). Groundwater Management for Irrigated Agriculture Through Geospatial Techniques. In: Mitran, T., Meena, R.S., Chakraborty, A. (eds) Geospatial Technologies for Crops and Soils. Springer, Singapore. https://doi.org/10.1007/978-981-15-6864-0_13

Download citation

Publish with us

Policies and ethics