Skip to main content

MALDITOF the Fourth Generation Techniques Still at Its Infancy to Identify Forensically Important Insects

  • Chapter
  • First Online:
Forensic DNA Typing: Principles, Applications and Advancements
  • 1128 Accesses

Abstract

Forensic entomology plays an important role in death investigations. The morphological identification of forensically important insects (FII) recovered from the scene of crime is important to help estimate time since death. It is seen that many times insects are in their immature stages which are indistinguishable. The molecular techniques come here as golden standards to barcode the genetic code of such FII and identify them at species level targeting mainly on NADH dehydrogenase 1 to 5 (ND 1–5), cytochrome b and c oxidase (COI) mitochondrial gene. However, at times species are so closely related that dissimilar species are grouped together. This often ends with their incorrect identification both morphologically and at molecular level. Alternatively, Matrix assisted laser desorption/ionization time of flight mass spectrophotometry (MALDI TOF MS) techniques based on the proteins content in a given species, help in discriminating closely related species along with deciphering their age. Studies have shown that MALDI TOF MS discriminates morphologically, biochemically, and genetically similar species at higher degree of confidence. Not the least, they are economical, quick and do not require prior reference data, knowledge or expertise in taxon identification. The technique is although not new but it is emerging a little slowly to identify forensically important insects for correct estimation of post mortem interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(Q-TOF) MS:

Quadrupole orthogonal acceleration time of flight

AmTRP:

Apis mellifera tachykinin-related peptide

bp:

Base pair

CBOL:

Consortium for barcode of life

CHC:

Cuticular hydrocarbons

COI,II,III :

Cytochrome C Oxidase Subunit I,II,III

cytb :

Cytochrome b

DNA:

Deoxyribonucleic acid

Ds:

Dice similarity

FII:

Forensically important insects

GAM:

Generalized additive model

Ile:

Isoleucine

ITS:

Internal Transcribed Spacer

kDa:

Kilo Daltons

Leu:

Leucine

LSV:

Log score value

MALDI-TOF-MS:

Matrix assisted laser desorption/ionization time of flight mass spectrophotometry

mt COI:

Mitochondrial Cytochrome C Oxidase Subunit I

Mt-DNA:

Mitochondrial Deoxyribonucleic acid DNA

NCBI:

National centre of Biotechnology and Information

NU-DNA:

Nuclear deoxyribonucleic acid

PCR-RFLP:

Polymerase chain reaction restriction fragment length polymorphism

PMImin:

Minimum post mortem interval

PVK/CAP2b:

Periviscerokinin/cardioacceleratory peptide 2b

rDNA:

Ribosomal deoxyribonucleic acid

Real-time PCR:

Real time polymerase chain reaction

rRNA:

Ribosomal ribonucleic acid

References

  • Al-Khalifa MS, Mashaly AM et al (2020) Insect species colonized indoor and outdoor human corpses in Riyadh, Saudi Arabia. J King Saud Univ Sci 32(3):1812–1817

    Article  Google Scholar 

  • Al-Qahtni AH, Al-Khalifa MS et al (2020) Two human cases associated with forensic insects in Riyadh, Saudi Arabia. Saudi J Biol Sci 27(3):881–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Amendt J, Krettek R et al (2004) Forensic entomology. Naturwissenschaften 91(2):51–65

    Article  CAS  PubMed  Google Scholar 

  • Amendt J, Richards C et al (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7(4):379–392

    Article  CAS  PubMed  Google Scholar 

  • Anderson GS (2001) Insect succession on carrion and its relationship to determining time of death. In: Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FL, pp 143–176

    Google Scholar 

  • Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41(4):617–625

    Article  Google Scholar 

  • Aneyo I, Alafia O et al (2020) Aerobic microbe community and necrophagous insects associated with decomposition of pig carrion poisoned with lead. Legal Med 42:101638

    Article  CAS  PubMed  Google Scholar 

  • Antunes S, Galindo RC et al (2012) Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol 42(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Arbeitman MN, Furlong EE et al (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590):2270–2275

    Article  CAS  PubMed  Google Scholar 

  • Ashworth JR, Wall R (1994) Responses of the sheep blowflies Lucilia sericata and L. cuprina to odour and the development of semiochemical baits. Med Vet Entomol 8(4):303–309

    Article  CAS  PubMed  Google Scholar 

  • Audsley N, Weaver RJ (2003) Identification of neuropeptides from brains of larval Manduca sexta and Lacanobia oleracea using MALDI-TOF mass spectrometry and post-source decay. Peptides 24(10):1465–1474

    Article  CAS  PubMed  Google Scholar 

  • Bala M, Sharma A (2016) Review of some recent techniques of age determination of blow flies having forensic implications. Egypt J Forensic Sci 6(3):203–208

    Article  Google Scholar 

  • Ballard JWO, Chernoff B et al (2002) Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56(3):527–545

    Article  PubMed  Google Scholar 

  • Ballard JWO, Melvin RG et al (2007) Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61(7):1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Beckstead RB, Lam G et al (2005) The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol 6(12):R99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benecke M, Wells JD (2001) DNA techniques for forensic entomology. In: Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FL, pp 341–352

    Google Scholar 

  • Berg MC, Benbow ME (2013) Environmental factors associated with Phormia regina (Diptera: Calliphoridae) oviposition. J Med Entomol 50(2):451–457

    Article  PubMed  Google Scholar 

  • Boykin LM, Armstrong K et al (2012) DNA barcoding invasive insects: database roadblocks. Invertebr Syst 26(6):506–514

    Article  CAS  Google Scholar 

  • Burgdorfer W, Mavros AJ (1970) Susceptibility of various species of rodents to the relapsing fever spirochete, Borrelia hermsii. Infect Immun 2(3):256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd JH, Castner JL (2009) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Campbell PM (2005) Species differentiation of insects and other multicellular organisms using matrix-assisted laser desorption/ionization time of flight mass spectrometry protein profiling. Syst Entomol 30(2):186–190

    Article  Google Scholar 

  • Campobasso CP, Introna F (2001) The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int 120(1–2):132–139

    Article  CAS  PubMed  Google Scholar 

  • Campobasso CP, Di Vella G et al (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120(1–2):18–27

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LM, Linhares ACX et al (2001) Determination of drug levels and the effect of diazepam on the growth of necrophagous flies of forensic importance in southeastern Brazil. Forensic Sci Int 120(1–2):140–144

    Article  CAS  PubMed  Google Scholar 

  • Claydon MA, Davey SN et al (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14(11):1584–1586

    Article  CAS  PubMed  Google Scholar 

  • Clynen E, Baggerman G et al (2003) Peptidomics of the locust corpora allata: identification of novel pyrokinins (-FXPRLamides). Peptides 24(10):1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Cook PE, Hugo LE et al (2006) The use of transcriptional profiles to predict adult mosquito age under field conditions. Proc Natl Acad Sci U S A 103(48):18060–18065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvačka J, Jiroš P et al (2006) Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J Chem Ecol 32(2):409–434

    Article  PubMed  CAS  Google Scholar 

  • Cywinska A, Hunter F et al (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20(4):413–424

    Article  CAS  PubMed  Google Scholar 

  • Dadour IR, Cook DF et al (2001) Forensic entomology: application, education and research in Western Australia. Forensic Sci Int 120(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • De Jong G (1995) Report of Chrysomya megacephala (Diptera: Calliphoridae) in northern New Mexico. Entomol News 106(4):192

    Google Scholar 

  • Dekeirsschieter J, Verheggen F et al (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189(1–3):46–53

    Article  CAS  PubMed  Google Scholar 

  • Dieme C, Yssouf A et al (2014) Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasit Vectors 7(1):544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donaldson AE, Lamont IL (2014) Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci 46(1):8–26

    Article  Google Scholar 

  • Dridi B, Raoult D et al (2012) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 120(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Dvorak V, Halada P et al (2014) Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit Vectors 7(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellison JR, Hampton EN (1982) Age determination using the apodeme structure in adult screwworm flies (Cochliomyia hominivorax). J Insect Physiol 28(9):731–736

    Article  Google Scholar 

  • Evans JD, Wheeler DE (1999) Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proc Natl Acad Sci U S A 96(10):5575–5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federhen S (2011) The NCBI taxonomy database. Nucleic Acids Res 40(D1):D136–D143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feltens R, Görner R et al (2010) Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol Biol 10(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fotso AF, Mediannikov O et al (2014) MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis 8(7):e2984

    Article  CAS  Google Scholar 

  • Freiwald A, Sauer S (2009) Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4(5):732

    Article  CAS  PubMed  Google Scholar 

  • Gennard D (2012) Forensic entomology: an introduction. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Giffen JE, Rosati JY et al (2017) Species identification of necrophagous insect eggs based on amino acid profile differences revealed by direct analysis in real time-high resolution mass spectrometry. Anal Chem 89(14):7719–7726

    Article  CAS  PubMed  Google Scholar 

  • Goff M (1993) Estimation of postmortem interval using arthropod development and successional patterns. Forensic Sci Rev 5:81–81

    CAS  PubMed  Google Scholar 

  • Greenberg B, Kunich JC (2002) Entomology and the law: flies as forensic indicators. Cambridge University Press, Cambridge

    Google Scholar 

  • Griffiths K, Krosch MN et al (2020) Variation in decomposition stages and carrion insect succession in a dry tropical climate and its effect on estimating postmortem interval. Forensic Sci Res:1–9. https://doi.org/10.1080/20961790.2020.1733830

  • Gupta A, Setia P (2004) Forensic entomology—past, present and future. Anil Aggrawals Internet J Forensic Med Toxicol 5(1):50–53

    Google Scholar 

  • Gutiérrez-Gutiérrez C, Cantalapiedra-Navarrete C et al (2013) Molecular phylogeny of the nematode genus Longidorus (Nematoda: Longidoridae) with description of three new species. Zool J Linnean Soc 167(4):473–500

    Article  Google Scholar 

  • Hart AJ, Whitaker AP (2006) Forensic entomology: insect activity and its role in the decomposition of human cadavers. Antenna 30(4):159–164

    Google Scholar 

  • Hebert PD, Cywinska A et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321

    Article  CAS  Google Scholar 

  • Hebert PD, Stoeckle MY et al (2004) Identification of birds through DNA barcodes. PLoS Biol 2(10):e312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofer IM, Hart AJ et al (2017) Optimising crime scene temperature collection for forensic entomology casework. Forensic Sci Int 270:129–138

    Article  PubMed  Google Scholar 

  • Holland R, Wilkes J et al (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(10):1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Hoppenheit A, Murugaiyan J et al (2013) Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Negl Trop Dis 7(7):e2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingrisch S (1995) Evolution of the Chorthippus biguttulus group (Orthoptera, Acriditae) in the Alps, based on morphology and stridulation. Rev Suisse Zool 102(2):475–535

    Google Scholar 

  • Inosaki A, Yasuda A et al (2010) Mass spectrometric analysis of peptides in brain neurosecretory cells and neurohemal organs in the adult blowfly, Protophormia terraenovae. Comp Biochem Physiol A Mol Integr Physiol 155(2):190–199

    Article  PubMed  CAS  Google Scholar 

  • Jiggins FM (2002) The rate of recombination in Wolbachia bacteria. Mol Biol Evol 19(9):1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Karger A, Kampen H et al (2012) Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick Borne Dis 3(2):78–89

    Article  PubMed  Google Scholar 

  • Kaufmann C, Ziegler D et al (2011) Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med Vet Entomol 25(1):32–38

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann C, Schaffner F et al (2012a) Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann C, Steinmann IC et al (2012b) Spatio-temporal occurrence of Culicoides biting midges in the climatic regions of Switzerland, along with large scale species identification by MALDI-TOF mass spectrometry. Parasit Vectors 5(1):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy T, Rajamani U et al (1996) Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(8):883–888

    Article  CAS  PubMed  Google Scholar 

  • La Scola B, Campocasso A et al (2010) Tentative characterization of new environmental giant viruses by MALDI-TOF mass spectrometry. Intervirology 53(5):344–353

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ma D et al (2017) Application of MALDI-TOF MS for estimating the postmortem interval in rat muscle samples. J Forensic Sci 62(5):1345–1350

    Article  PubMed  Google Scholar 

  • Macht M, Asperger A et al (2004) Comparison of laser-induced dissociation and high-energy collision-induced dissociation using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) for peptide and protein identification. Rapid Commun Mass Spectrom 18(18):2093–2105

    Article  CAS  PubMed  Google Scholar 

  • Mangold A, Bargues M et al (1997) 18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari: Ixodidae). Parasitol Res 84(1):31–37

    Article  Google Scholar 

  • Mathis A, Depaquit J et al (2015) Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasit Vectors 8(1):266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medzihradszky KF, Campbell JM et al (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72(3):552–558

    Article  CAS  PubMed  Google Scholar 

  • Mellmann A, Cloud J et al (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46(6):1946–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf JL, Parfrey LW et al (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2:e01104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirth CK, Truman JW et al (2009) The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs. Development 136(14):2345–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizrachi I (2007) GenBank: the nucleotide sequence database. The NCBI Handbook [Internet], updated 22

    Google Scholar 

  • Morris M, Woolhouse A et al (1998) Orientation stimulants from substances attractive to Lucilia cuprina (Diptera, Calliphoridae). Aust J Exp Agric 38(5):461–468

    Article  CAS  Google Scholar 

  • Nachman RJ, Russell WK et al (2005) Mass spectrometric assignment of Leu/Ile in neuropeptides from single neurohemal organ preparations of insects. Peptides 26(11):2151–2156

    Article  CAS  PubMed  Google Scholar 

  • Narita S, Nomura M et al (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 15(4):1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Nekola JC, Barthel M (2002) Morphometric analysis of the genus Carychium in the Great Lakes region of North America. J Conchol 37(5):515–532

    Google Scholar 

  • Noël S, Tessier N et al (2004) Molecular identification of two species of myiasis-causing Cuterebra by multiplex PCR and RFLP. Med Vet Entomol 18(2):161–166

    Article  PubMed  Google Scholar 

  • Norris DE, Klompen J et al (1996) Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. J Med Entomol 33(1):78–89

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Gibbs J et al (2009) DNA barcoding and the mediocrity of morphology. Mol Ecol Resour 9:42–50

    Article  PubMed  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5):592–602

    Article  Google Scholar 

  • Pechal JL, Moore H et al (2014) Hydrocarbon profiles throughout adult Calliphoridae aging: a promising tool for forensic entomology. Forensic Sci Int 245:65–71

    CAS  PubMed  Google Scholar 

  • Perera MR, Vargas RDF et al (2005) Identification of aphid species using protein profiling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Entomol Exp Appl 117(3):243–247

    Article  CAS  Google Scholar 

  • Pohjoismäki JL, Karhunen PJ et al (2010) Indoors forensic entomology: colonization of human remains in closed environments by specific species of sarcosaprophagous flies. Forensic Sci Int 199(1–3):38–42

    Article  PubMed  Google Scholar 

  • Powell JR, DeSalle R (1995) Drosophila molecular phylogenies and their uses. In: Evolutionary biology. Springer, New York, pp 87–138

    Chapter  Google Scholar 

  • Predel R, Wegener C et al (2004) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474(3):379–392

    Article  CAS  PubMed  Google Scholar 

  • Predel R, Roth S et al (2005) New insect order Mantophasmatodea: species differentiation by mass fingerprints of peptide hormones? J Zool Syst Evol Res 43(2):149–156

    Article  Google Scholar 

  • Rahman MM, Neupert S et al (2013) Neuropeptidomics of the Australian sheep blowfly Lucilia cuprina (Wiedemann) and related Diptera. Peptides 41:31–37

    Article  CAS  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PD (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7(3):355–364. http://www.barcodinglife.org

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rindi F, Guiry MD et al (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe 1. J Phycol 44(6):1529–1540

    Article  PubMed  Google Scholar 

  • Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci U S A 92(14):6389–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux O, Gers C et al (2008) Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 22(4):309–317

    Article  CAS  PubMed  Google Scholar 

  • Sambou M, Aubadie-Ladrix M et al (2015) Comparison of matrix-assisted laser desorption ionization–time of flight mass spectrometry and molecular biology techniques for identification of Culicoides (Diptera: Ceratopogonidae) biting midges in Senegal. J Clin Microbiol 53(2):410–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer S, Freiwald A et al (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3(7):e2843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawamura K (2000) Genetics of hybrid inviability and sterility in Drosophila: the Drosophila melanogasterDrosophila simulans case. Plant Species Biol 15(3):237–247

    Google Scholar 

  • Schaffner F, Kaufmann C et al (2014) Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasit Vectors 7(1):142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seng P, Rolain J-M et al (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5(11):1733–1754

    Article  CAS  PubMed  Google Scholar 

  • Singhal N, Kumar M et al (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling FA, Anderson GS et al (1994) A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39(2):418–427

    Article  CAS  PubMed  Google Scholar 

  • Statheropoulos M, Agapiou A et al (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ 385(1–3):221–227

    Article  CAS  PubMed  Google Scholar 

  • Steinmann IC, Pflüger V et al (2013) Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology 140(3):318–327

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Yasuda A et al (2003) Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen and drone heads. Insect Mol Biol 12(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Tantawi TI, El-Kady EM et al (1996) Arthropod succession on exposed rabbit carrion in Alexandria, Egypt. J Med Entomol 33(4):566–580

    Article  CAS  PubMed  Google Scholar 

  • Tarone AM, Foran DR (2011) Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. J Forensic Sci 56:S112–S122

    Article  CAS  PubMed  Google Scholar 

  • Tarone AM, Jennings KC et al (2007) Aging blow fly eggs using gene expression: a feasibility study. J Forensic Sci 52(6):1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Toolson EC, Kuper-Simbron R (1989) Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal-acclimation ability. Evolution 43(2):468–473

    PubMed  Google Scholar 

  • Tullis K, Goff ML (1987) Arthropod succession in exposed carrion in a tropical rainforest on O’ahu Island, Hawai’i. J Med Entomol 24(3):332–339

    Article  CAS  PubMed  Google Scholar 

  • Ulrich S, Kühn U et al (2017) Direct identification of edible insects by MALDI-TOF mass spectrometry. Food Control 76:96–101

    Article  CAS  Google Scholar 

  • Wegener C, Gorbashov A (2008) Molecular evolution of neuropeptides in the genus Drosophila. Genome Biol 9(8):R131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells J, LaMotte L (2001) Estimating the postmortem interval. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wells JD, Sperling FA (2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci Int 120(1–2):110–115

    Article  CAS  PubMed  Google Scholar 

  • Wells JD, Stevens JR (2008) Application of DNA-based methods in forensic entomology. Annu Rev Entomol 53:103–120

    Article  CAS  PubMed  Google Scholar 

  • Wells JD, Pape T et al (2001) DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 46(5):1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Whitworth T, Dawson R et al (2007) DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc R Soc B Biol Sci 274(1619):1731–1739

    Article  CAS  Google Scholar 

  • Xinghua W, Jifeng C et al (2010) The availability of 16SrDNA gene for identifying forensically important blowflies in China. Rom J Leg Med 1:43–50

    Google Scholar 

  • Xu H, Ye G-Y et al (2014) Age-dependent changes in cuticular hydrocarbons of larvae in Aldrichina grahami (Aldrich) (Diptera: Calliphoridae). Forensic Sci Int 242:236–241

    Article  CAS  PubMed  Google Scholar 

  • Yasuda-Kamatani Y, Yasuda A (2000) Identification of orcokinin gene-related peptides in the brain of the crayfish Procambarus clarkii by the combination of MALDI-TOF and on-line capillary HPLC/Q-TOF mass spectrometries and molecular cloning. Gen Comp Endocrinol 118(1):161–172

    Article  CAS  PubMed  Google Scholar 

  • Yssouf A, Socolovschi C et al (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS One 8(8):e72380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yssouf A, Parola P et al (2014) Identification of European mosquito species by MALDI-TOF MS. Parasitol Res 113(6):2375–2378

    Article  PubMed  Google Scholar 

  • Yssouf A, Almeras L et al (2015) Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks Tick Borne Dis 6(5):579–586

    Article  PubMed  Google Scholar 

  • Zhu GH, Xu XH et al (2007) Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci Int 169(1):1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.V. is thankful to University Grant Commission Basic Science Research start up project No.F.30-12/2014(BSR) sanctioned to her.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Vinayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinayak, V., Rai, A. (2020). MALDITOF the Fourth Generation Techniques Still at Its Infancy to Identify Forensically Important Insects. In: Shrivastava, P., Dash, H.R., Lorente, J.A., Imam, J. (eds) Forensic DNA Typing: Principles, Applications and Advancements . Springer, Singapore. https://doi.org/10.1007/978-981-15-6655-4_26

Download citation

Publish with us

Policies and ethics