Skip to main content

Genome Editing for the Improvement of Brassicaceae for Abiotic Stress Tolerance

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

Abiotic stresses are the major prevailing forms of environmental contaminants that result in harmful effects in plants and cause foremost environmental problems globally. A general effect of abiotic stress is the extreme accumulation of reactive oxygen species that can cause lipid peroxidation, oxidation of protein, inactivation of enzymes, DNA damage and interact with other imperative constituents of plant cells. Higher plants have evolved an intricate antioxidant defence system to scavenge reactive oxygen species during abiotic stress conditions. Genome editing approaches propose numerous applications in the improvement of crops towards abiotic stress tolerance, and produce quality improvement. Utilizing transgenic approaches, functional validation of several target genes engage in different processes, viz signalling, transcription, homeostasis, antioxidant defence for enhanced abiotic stress resistance has been employed in different plants including Brassicaceae crop plants. This chapter provides an inclusive outline to illustrate the interest of researchers for a better understanding of genome editing advancements in relation to abiotic stress tolerance in different Brassicaceae crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bidhan R, Noren SK, Asit BM, Asit KB (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10:1–22

    Article  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

  • Cathomen T, Keith Joung J (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16:1200–1207

    Article  CAS  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K et al (2017) An agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    Article  CAS  Google Scholar 

  • Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  Google Scholar 

  • Christian ML, Demorest ZL, Starker CG et al (2012) Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable Di-residues. PLoS ONE 7:e45383

    Article  CAS  Google Scholar 

  • Cong L, Zhou RH, Kuo Y-C, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  Google Scholar 

  • Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475:1955–1964

    Article  CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sc 8:1364

    Article  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–139110

    Article  CAS  Google Scholar 

  • Gong X-Q, Liu J-H (2013) Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tiss Org 113:137–147

    Article  CAS  Google Scholar 

  • Jankele R, Svoboda P (2014) TAL effectors: tools for DNA targeting. Briefings Funct Genomics 13(5):409–419

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci 337(6096):816–821

    Google Scholar 

  • Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156–1160

    Article  CAS  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647

    Article  CAS  Google Scholar 

  • Kumar S, Andy A (2012) Health promoting bioactive phytochemicals from Brassica. Int Food Res J 19:141–152.

    Google Scholar 

  • Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar BA et al (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236:1081–1092

    Article  CAS  Google Scholar 

  • Lamb BM, Mercer AC, Barbas CF III (2013) Directed evolution of the TALE N-terminal domain for recognition of all 50 bases. Nucleic Acids Res 41:9779–9785

    Article  CAS  Google Scholar 

  • Lorraine S, Symington, Gautier J (2011) Double-Strand break end resection and repair pathway choice. Annu Rev Genet 45(1):247–271

    Google Scholar 

  • Mahas A, Mahfouz M (2018) Engineering virus resistance via CRISPR–Cas systems. CurrOpin Virol 32:1–8

    CAS  Google Scholar 

  • Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  CAS  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  Google Scholar 

  • Möellers C (2017) Quality aspects in breeding Brassica species, in Brassica 2017: VII International Symposium on Brassicas, Pontevedra

    Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237

    Article  CAS  Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 6(3):19–40

    Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci 107:12034–12039

    Article  CAS  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  CAS  Google Scholar 

  • Palpant NJ, Dudzinski D (2013) Zinc finger nucleases: looking toward translation. Gene Ther 20:121–127

    Article  CAS  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNAcomplex at 2.1 A. Science 252:809–817

    Article  CAS  Google Scholar 

  • Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J 87:5–15

    Article  CAS  Google Scholar 

  • Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318: 645–648

    Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  Google Scholar 

  • Schornack S, Meyer A, Römer P, Jordan T, Lahaye T (2006) Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol 163: 256–272

    Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  Google Scholar 

  • Streubel J, Blücher CA, Landgraf, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30: 593–595

    Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ et al (2009) High frequency modification of plant genes using engineered zinc finger nucleases. Nature 459(442–445):2009

    Google Scholar 

  • Wang W, Akhunova A, Chao S, Akhunov E (2016) Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. BioRxiv 051342

    Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  Google Scholar 

  • Xiong J, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019

    Article  Google Scholar 

  • Zafar SA, Zaidi SS, Gaba Y, Pareek SLS, Dhanhker OP, Li X, Mansoor S, Pareek A (2019) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot. https://doi.org/10.1093/jxb/erz476

    Article  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallaced E et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Nat Acad Sci USA 107:12028–12033

    Article  CAS  Google Scholar 

  • Zhang M, Zhao J, Li L, Gao Y, Zhao L, Patil SB, Fang J, Zhang W, Yang Y, Li M et al (2017) The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation. Plant, Cell Environ 40:2831–2843

    Google Scholar 

  • Zhang, Y, Li S, Xue S, Yang S, Huang J, Wang, L (2018). Phylogenetic and CRISPR/Cas9 studies in deciphering the evolutionary trajectory and phenotypic impacts of rice ERECTA genes. Front Plant Sci 9:473.https://doi.org/10.3389/fpls.2018.00473

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Israil Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalil, S.U., Ansari, M.I. (2020). Genome Editing for the Improvement of Brassicaceae for Abiotic Stress Tolerance. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_17

Download citation

Publish with us

Policies and ethics