Skip to main content
Log in

Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

An autophagy-related gene Atg8 was cloned for the first time from wild emmer wheat, named as TdAtg8, and its role on autophagy under abiotic stress conditions was investigated. Examination of TdAtg8 expression patterns indicated that Atg8 expression was strongly upregulated under drought stress, especially in the roots when compared to leaves. LysoTracker® red marker, utilized to observe autophagosomes, revealed that autophagy is constitutively active in Triticum dicoccoides. Moreover, autophagy was determined to be induced in plants exposed to osmotic stress when compared to plants grown under normal conditions. Functional studies were executed in yeast to confirm that the TdATG8 protein is functional, and showed that the TdAtg8 gene complements the atg8∆::kan MX yeast mutant strain grown under nitrogen deficiency. For further functional analysis, TdATG8 protein was expressed in yeast and analyzed using Western immunoblotting. Atg8-silenced plants were exposed to drought stress and chlorophyll and malondialdehyde (MDA) content measurements demonstrated that Atg8 plays a key role on drought stress tolerance. In addition, Atg8-silenced plants exposed to osmotic stress were found to have decreased Atg8 expression level in comparison to controls. Hence, Atg8 is a positive regulator in osmotic and drought stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

API:

Aminopeptidase I

BSMV:

Barley stripe mosaic virus

CDS:

Coding sequence

CVT:

Cytoplasm to vacuole targeting

Dpi:

Days post-inoculation

ECL:

Enhanced chemiluminescence

GAL4 AD:

GAL4 activation domain

mAPI:

Mature API

MDA:

Malondialdehyde

ORF:

Open reading frame

PDS:

Phytoene desaturase

PE:

Phosphatidylethanolamine

PEG:

Polyethylene glycol

prAPI:

Precursor API

qRT-PCR:

Quantitative real-time PCR

RT-PCR:

Reverse-transcriptase PCR

SPAD:

Soil plant analysis development

VIGS:

Virus-induced gene silencing

References

  • Bassham DC (2007) Plant autophagy—more than a starvation response. Curr Opin Plant Biol 10:587–593

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta Mol Cell Res 9:1397–1403

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, USA, pp 1158–1249

  • Budak H, Kasap Z, Shearman RC, Dweikat I, Sezerman U, Mahmood A (2006a) Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides. Mol Biotechnol 34:293–301

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Su S, Ergen N (2006b) Revealing constitutively expressed resistance genes in Agrostis species using PCR-based motif-directed RNA fingerprinting. Genet Res Camb 88:165–175

    Article  CAS  Google Scholar 

  • Cebeci O, Budak H (2009) Global expression patterns of three Festuca species exposed to different doses of glyphosate using the Affymetrix GeneChip Wheat Genome Array. Comp Funct Genomics 2009:505701

    Article  Google Scholar 

  • Chung T, Suttangkakul A, Vierstra RD (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149:1220–1234

    Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Durmaz E, Coruh C, Dinler G, Grusak MA, Peleg Z, Saranga Y, Yazici A, OzturkL Cakmak I, Budak H (2010) Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat. Plant Mol Biol Rep 29:582–596

    Article  Google Scholar 

  • Dvorak J, Akhunov E (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops–Triticum alliance. Genetics 171:323–332

    Article  PubMed  CAS  Google Scholar 

  • Ergen ZN, Budak H (2009) Sequencing over 13,000 ESTs from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ 32:220–236

    Article  PubMed  CAS  Google Scholar 

  • Ergen ZN, Dinler G, Shearman RC, Budak H (2007) Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra. Gene 393:145–152

    Article  PubMed  CAS  Google Scholar 

  • Ergen ZN, Thimmapuram J, Bohnert H, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9:377–396

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by the Liac/SS carrier DNA/PEG method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602

    Article  PubMed  CAS  Google Scholar 

  • He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, Zhao S, Liu JO, Yu L (2003) Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278:29278–29287

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47:1641–1652

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Kantar M, Unver T, Budak H (2010a) Regulation of barley miRNA upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10:493–507

    Article  PubMed  CAS  Google Scholar 

  • Kantar M, Lucas S, Budak H (2010b) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  PubMed  Google Scholar 

  • Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567:302–306

    Article  PubMed  CAS  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15:1–32

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963

    Article  PubMed  CAS  Google Scholar 

  • Mitou G, Budak H, Gozuacik D (2009) Techniques to study autophagy in plants. Int J Plant Genomics 2009:451357

    PubMed  Google Scholar 

  • Moriyasu Y, Hattori M, Jauh G, Rogers JC (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44:795–802

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Suzuki K, Ohsumi Y (2002) Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12:231–235

    Article  PubMed  CAS  Google Scholar 

  • Pogue GP, Lindbo JA, Dawson WO, Turpen TH (1998) Tobamovirus transient expression vectors: tools for plant biology and high-level expression of foreign proteins in plants. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–27

    Google Scholar 

  • Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17:249–263

    PubMed  CAS  Google Scholar 

  • Simon P (2003) Q Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  PubMed  CAS  Google Scholar 

  • Slavikova S, Shy G, Yao YL, Giozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56:2839–2849

    Article  PubMed  CAS  Google Scholar 

  • Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A et al (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15:2885–2899

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8:165–173

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097–2110

    Article  PubMed  CAS  Google Scholar 

  • Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349:275–280

    Article  PubMed  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  PubMed  CAS  Google Scholar 

  • Unver T, Budak H (2009a) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics 2009:198680

    PubMed  Google Scholar 

  • Unver T, Budak H (2009b) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230:659–669

    Article  PubMed  CAS  Google Scholar 

  • Unver T, Bakar M, Shearman RC, Budak H (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomics 283:397–413

    Article  PubMed  CAS  Google Scholar 

  • Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76

    PubMed  Google Scholar 

  • Wei S, Ma H, Liu C, Wu J, Yang J (2006) Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33:273–278

    Article  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2007a) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3:257–258

    PubMed  CAS  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007b) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16:2967–2983

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Yeast Atg8 mutant strain (BY4741, atg8Δ::kanMX, MATa; his3Δ1; leu2Δ0; met15Δ0; ura3ΔO) and pRS316 plasmid with yeast Atg8 gene were kindly provided by Nakatogawa laboratory. Polyclonal anti-API antibody and Arabidopsis thaliana anti-Atg8a antibody used in this study were kindly provided by Dr. Dan Klionsky and Dr. Richard D. Vierstra, respectively. BSMV vectors used in this study were obtained from Dr. S Scofield (USDA-Agricultural Research Service). Nullisomic–tetrasomic wheat lines were kindly provided by Prof. Bikram Gill from Kansas State University. G.K. is recipient of Yousef Jameel Scholarship for PhD studies. This project was partially supported by EU-FP6 COST Action, TUBITAK (The Scientific and Technological Research Council of Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikmet Budak.

Additional information

The authors D. Kuzuoglu-Ozturk and O. Cebeci Yalcinkaya are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzuoglu-Ozturk, D., Cebeci Yalcinkaya, O., Akpinar, B.A. et al. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236, 1081–1092 (2012). https://doi.org/10.1007/s00425-012-1657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1657-3

Keywords

Navigation