Skip to main content

Rhizoremediation of Heavy Metal- and Xenobiotic-Contaminated Soil: An Eco-Friendly Approach

  • Chapter
  • First Online:
Removal of Emerging Contaminants Through Microbial Processes

Abstract

In the last few decades, staggeredly increasing human population, indiscriminate use of pesticides, polycyclic aromatic hydrocarbons, and discharge of effluents containing toxic heavy metals, dyes, etc. have negatively impacted the soil fertility and biodiversity to the extent of converting the agricultural land into barren land. These pollutants can be removed or altered by conventional and physical methods. However, these methods are neither cost-effective nor eco-friendly as they generate large amount of toxic intermediates. The most powerful eco-friendly approach is bioremediation. Microorganisms play a pivotal role in the maintenance and sustainability of any ecosystem. They are versatile and capable to adapt to any challenges posed by the environment. The biotic activities of a diverse group of bacterial populations residing in rhizosphere affect the dynamics of soil which in turn affect the crop productivity. They stimulate plant growth by making soil nutrients available to them, stimulating the production of various plant growth hormones, protecting the plants from pathogens by their antagonistic activity and remediation of the pollutants by sequestering toxic heavy metals, and degrading xenobiotic compounds such as pesticides, PAHs, etc. This chapter highlights the role of PGPR in remediation of heavy metal- and xenobiotic-contaminated soil for sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165(1–3):1–12

    Article  CAS  PubMed  Google Scholar 

  • Abhilash PC, Srivastava S, Srivastava P, Singh B, Jafri A, Singh N (2011) Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environ Exp Bot 74:127–130

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24(2):253–262

    Article  CAS  Google Scholar 

  • Abtenh EG (2017) Application of microorganisms in bioremediation-review. J Environ Microbiol 1(1):2–9

    Google Scholar 

  • Ahemad M, Khan MS (2011) Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram [Vignaradiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84(1):123–131

    Article  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5(12):1807–1817

    CAS  Google Scholar 

  • Akshata JN, Udayashankara TH, Lokesh K (2014) Review on bioremediation of heavy metals with microbial isolates and amendments on soil residue. Int J Sci Res 3:118–123

    Google Scholar 

  • Al-Baldawi IA, Abdullah SRS, Anuar N, Suja F, Mushrifah I (2015) Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng 74:463–473

    Article  Google Scholar 

  • Andreolli M, Lampis S, Poli M, Gullner G, Biro B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92(6):688–694

    Article  CAS  PubMed  Google Scholar 

  • Aransiola SA, UJJ I, Abioye OP (2013) Phytoremediation of lead polluted soil by Glycine max L. Appl Environ Soil Sci 2013:1–7

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bhatia D, Malik DK (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6(4):72–79

    Google Scholar 

  • Bhushan C, Bhardwaj A, Misra SS (2013) State of pesticide regulations in India. Centre for Science and Environment, New Delhi

    Google Scholar 

  • Bisht S, Pandey P, Sood A, Sharma S, Bisht NS (2010) Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of Populus deltoides. Braz J Microbiol 41(4):922–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, Bisht NS (2014) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol 60:67–76

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Substrate availability in phenanthrene biodegradation: transfer mechanism and influence on metabolism. Appl Microbiol Biotechnol 43(5):952–960

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76

    Google Scholar 

  • Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30(1):139–144

    CAS  PubMed  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    Article  CAS  PubMed  Google Scholar 

  • De Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209(2):259–263

    Article  PubMed  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci 97(12):6287–6291

    Article  CAS  PubMed  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338(4):241–254

    Article  PubMed  Google Scholar 

  • Fu WQ, Xu M, Sun K, Chen XL, Dai CC, Jia Y (2020) Remediation mechanism of endophytic fungus Phomopsis liquidambaris on phenanthrene in vivo. Chemosphere 243:125305

    Article  CAS  PubMed  Google Scholar 

  • Fulekar MH (2014) Rhizosphere bioremediation of pesticides by microbial consortium and potential microorganism. Int J Curr Microbiol Appl Sci 3(7):235–248

    Google Scholar 

  • Ganesan V (2012) Rhizoremediation: a pragmatic approach for remediation of heavy metal-contaminated soil. In: Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 147–161

    Chapter  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Gilden R, Huffling K, Sattler B (2010) Pesticide and health risks. Obstet Gynecol Neonatal Nurs 39:103–110

    Article  Google Scholar 

  • Golubev SN, Schelud’ko AV, Muratova AY, Makarov OE, Turkovskaya OV (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Pollut 198(1–4):5–16

    Article  CAS  Google Scholar 

  • Gupta P, Rani R, Chandra A, Kumar V (2018) Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Gupte A, Tripathi A, Patel H, Rudakiya D, Gupte S (2016) Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol J 10(1):363

    Article  CAS  Google Scholar 

  • Hansda A, Kumar V, Anshumali (2017) Cu-resistant Kocuria sp. CRB15: A potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 7(2):132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawrot-Paw M, Ratomski P, Mikiciuk M, Staniewski J, Koniuszy A, Ptak P, Golimowski W (2019) Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil. Environ Sci Pollut Res 26(33):34594–34602

    Article  CAS  Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44(1):1–5

    Article  Google Scholar 

  • Ho CH, Applegate B, Banks MK (2007) Impact of microbial/plant interactions on the transformation of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int J Phytoremediation 9(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Huang A, Teplitski M, Rathinasabapathi B, Ma L (2007) Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator. Can J Microbiol 56(3):236–246

    Article  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189(1):139–144

    Article  CAS  Google Scholar 

  • Jamil M, Zeb S, Anees M, Roohi A, Ahmed I, Rehman S, Rha ES (2014) Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytoremediation 16(6):554–571

    Article  CAS  PubMed  Google Scholar 

  • Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, Vangronsveld J (2015) Phytoremediation of metal contaminated soil using willow: exploiting plant-associated bacteria to improve biomass production and metal uptake. Int J Phytoremediation 17(11):1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Subrmanian RB, Mishra KK (2017) Role of plant growth promoting rhizobacteria in accumulation of heavy metal in metal contaminated soil. Emergent Life Sci Res 3:48–56

    Google Scholar 

  • Jonnalagadda SB, Nenzou G (1997) Studies on arsenic rich mine dumps. II The heavy element uptake by vegetation. J Environ Sci Health Part A 32(2):455–464

    Google Scholar 

  • Kala S (2014) Rhizoremediation: a promising rhizosphere technology. IOSR J Environ Sci Toxicol Food Technol 8:23–27

    Article  Google Scholar 

  • Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48(1):80–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Roman D, Kintz T, de las Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228

    Article  CAS  PubMed  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14(10):1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk Ellen L, Bloemberg Guido V, Lugtenberg Ben JJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kukla M, Płociniczak T, Piotrowska-Seget Z (2014) Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere 117:40–46

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41(12):2491–2502

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci 95(14):7860–7865

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166(2–3):1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JAF, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13(2):126–139

    Article  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23(2):297–310

    Article  CAS  PubMed  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2015) Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings. Pest Manag Sci 71(9):1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298(1–2):273–284

    Article  CAS  Google Scholar 

  • Oberai M, Khanna V (2018) Rhizoremediation–plant microbe interactions in the removal of pollutants. Int J Curr Microbiol App Sci 7(1):2280–2287

    Article  Google Scholar 

  • Pai SG, Riley MB, Camper ND (2001) Microbial degradation of mefenoxam in rhizosphere of Zinnia angustifolia. Chemosphere 44(4):577–582

    Article  CAS  PubMed  Google Scholar 

  • Perrin-Ganier C, Schiavon F, Morel JL, Schiavon M (2001) Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil. Chemosphere 44(4):887–892

    Article  CAS  PubMed  Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated soil and ground water at hazardous waste sites. US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Praveen A, Pandey VC, Marwa N, Singh DP (2019) Rhizoremediation of polluted sites: harnessing plant–microbe interactions. In: Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 389–407

    Chapter  Google Scholar 

  • Qin G, Gong D, Fan MY (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegradation 85:150–155

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99(9):3491–3498

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rangel WM, Thijs S, Janssen J, Oliveira Longatti SM, Bonaldi DS, Ribeiro PRA, Jambon I, Eevers N, Weyens N, Vangronsveld J, Moreira FMS (2017) Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Int J Phytorem 19(2):142–156

    Article  CAS  Google Scholar 

  • Romeh AA, Hendawi MY (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Technol 16(2):265–276

    Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Status of soil pollution in India. In: Soil pollution-an emerging threat to agriculture. Springer, Singapore, pp 271–315

    Chapter  Google Scholar 

  • Salunkhe VP, Sawant IS, Banerjee K, Rajguru YR, Wadkar PN, Oulkar DP, Sawant SD (2013) Biodegradation of profenofos by Bacillus subtilis isolated from grapevines (Vitis vinifera). J Agric Food Chem 61(30):7195–7202

    Article  CAS  PubMed  Google Scholar 

  • Saravanan A, Jeevanantham S, Narayanan VA, Kumar PS, Yaashikaa PR, Muthu CM (2019) Rhizoremediation–a promising tool for the removal of soil contaminants: a review. J Environ Chem Eng 8:103543

    Article  Google Scholar 

  • Schroll R, Becher HH, Dörfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40(10):3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2006) Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environmental conditions. Soil Biol Biochem 38(9):2682–2693

    Article  CAS  Google Scholar 

  • Sirohi G, Upadhyay A, Srivastava PS, Srivastava S (2015) PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J Soil Sci Plant Nutr 15(1):202–216

    Google Scholar 

  • Stanbrough R, Chuaboonmee S, Palombo EA, Malherbe F, Bhave M (2013) Heavy metal phytoremediation potential of a heavy metal resistant soil bacterial isolate, Achromobacter sp. strain AO22. Apcbee Proc 5:502–507

    Article  CAS  Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Article  CAS  PubMed  Google Scholar 

  • Tribedi P, Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6:223–231

    Google Scholar 

  • Tyagi H, Prashar P (2015) Isolation and identification of cypermethrin degrading Serratia nematodiphila from cauliflower rhizosphere. Int J Pharm Tech Res 7:64–71

    Google Scholar 

  • USEPA (2009) The value of country working together to regulate pesticides and food safety—achieving public health and environmental protection through international collaboration. http://www.epa.gov/oppfead1/international/2009/workingtogether.pdf. Accessed 29 July 2014

  • Wang D, Ma J, Li H, Zhang X (2018) Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the loess plateau, China. Int J Environ Res Public Health 15(8):1785

    Article  PubMed Central  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30(1):159–163

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48(11):3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43(22):8488–8495

    Article  CAS  PubMed  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  PubMed  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757

    CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P., Rawat, S. (2021). Rhizoremediation of Heavy Metal- and Xenobiotic-Contaminated Soil: An Eco-Friendly Approach. In: Shah, M.P. (eds) Removal of Emerging Contaminants Through Microbial Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-5901-3_5

Download citation

Publish with us

Policies and ethics