Skip to main content

Bioplastics: Fundamentals to Application

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

Plastics are major threat to the ecosystem, and growing consumer needs have contributed enormously to the widespread use and pollution of plastics. By 2050, it is estimated that around 12,500 metric tons of plastic waste will occupy landfills and the natural environment. Sustainable green technologies are therefore required to counteract the growing problem. Polyhydroxyalkanoates (PHAs) are biodegradable linear polyesters capable of replacing petrochemical plastics. Mostly functioning as sources of carbon and energy, PHAs can be derived either through microbial fermentation or through fungi and plants. Unlike conventional plastics, PHAs are biocompatible and non-toxic and have thermoplastic quality for use in the food, textile, medical and household industries. The present chapter focuses on the production, material properties and application of PHAs as functional bio-plastics and different strategies to alternate the plastic utilization. Microbes involved in different PHA productions in bioreactors, operational factors affecting bioplastic production and biochemical pathway associated with this have been illustrated. Further, challenges during scale-up studies for sustainable production and perspective have been discussed thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alva Munoz LE, Riley MR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng 100(5):882–888

    Article  PubMed  Google Scholar 

  • Amache R et al (2013) Advances in PHAs production. Chem Eng Trans 32:931–936

    Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Mol Biol Rev 54(4):450–472

    CAS  Google Scholar 

  • Ashby RD et al (2004) Bacterial poly (hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12(3):105–112

    Article  CAS  Google Scholar 

  • Ashby RD et al (2005) Synthesis of short−/medium-chain-length poly (hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 6(4):2106–2112

    Article  CAS  PubMed  Google Scholar 

  • Barnard GN, Sanders J (1989) The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem 264(6):3286–3291

    Article  CAS  PubMed  Google Scholar 

  • Barnes DK et al (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998

    Article  CAS  Google Scholar 

  • Berlanga M et al (2006) Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int Microbiol 9(2):95

    CAS  PubMed  Google Scholar 

  • Bormann E, Roth M (1999) The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 21(12):1059–1063

    Article  CAS  Google Scholar 

  • Braunegg G et al (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65(2–3):127–161

    Article  CAS  PubMed  Google Scholar 

  • Burdon KL (1946) Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52(6):665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesario SK, Hughes LA (2007) Precocious puberty: a comprehensive review of literature. J Obstet Gynecol Neonatal Nurs 36(3):263–274

    Article  PubMed  Google Scholar 

  • Chee J-Y et al. (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. Current research, technology and education topics in Applied Microbiology and Microbial Biotechnology 2: 1395–1404

    Google Scholar 

  • Chou K-S et al (1997) Poly (hydroxybutyrate-co-hydroxy-valerate) from swine waste liquor by Azotobacter vinelandii UWD. Biotechnol Lett 19(1):7–10

    Article  Google Scholar 

  • Chowdhury AA (1963) Poly-β-hydroxybuttersäure abbauende Bakterien und Exoenzym. Arch Microbiol 47(2):167–200

    CAS  Google Scholar 

  • Ciesielski S et al (2006) Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J Appl Microbiol 101(1):190–199

    Article  CAS  PubMed  Google Scholar 

  • Cromwick A-M et al (1996) The microbial production of poly (hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol 46(5–6):464–469

    Article  CAS  Google Scholar 

  • De Koning G, Witholt B (1997) A process for the recovery of poly (hydroxyalkanoates) from pseudomonads part 1: solubilization. Bioprocess Eng 17(1):7–13

    Article  Google Scholar 

  • De Smet M et al (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154(2):870–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Delafield F et al (1965) Decomposition of poly-β-hydroxybutyrate by pseudomonads. J Bacteriol 90(5):1455–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiGregorio BE (2009) Biobased performance bioplastic: Mirel. Chem Biol 16(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Doi Y (1990) Microbial polyesters. Vch, New York

    Google Scholar 

  • Eggink G et al (1995) Formation of novel poly (hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol 41(13):14–21

    Article  CAS  PubMed  Google Scholar 

  • Eriksen M et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández D et al (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26(2–3):159–167

    Article  Google Scholar 

  • Füchtenbusch B et al (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53(2):167–172

    Article  PubMed  Google Scholar 

  • Furrer P et al (2007) Efficient recovery of low endotoxin medium-chain-length poly ([R]-3-hydroxyalkanoate) from bacterial biomass. J Microbiol Methods 69(1):206–213

    Article  CAS  PubMed  Google Scholar 

  • Geyer R et al (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Lopez J et al (1996) Production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in wastewater from olive oil mills (alpechín). Int Biodeterior Biodegradation 38(3–4):271–276

    Article  CAS  Google Scholar 

  • Haas R et al (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253. 0712210692

    Article  CAS  PubMed  Google Scholar 

  • Hampson J, Ashby R (1999) Extraction of lipid-grown bacterial cells by supercritical fluid and organic solvent to obtain pure medium chain-length polyhydroxyalkanoates. J Am Oil Chem Soc 76(11):1371–1374

    Article  CAS  Google Scholar 

  • Haywood GW et al (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56(11):3354–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hein S et al (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170(3):162–170

    Article  CAS  PubMed  Google Scholar 

  • Hejazi P et al (2003) Supercritical fluid disruption of Ralstonia eutropha for poly (β-hydroxybutyrate) recovery. Biotechnol Prog 19(5):1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Huijberts G et al (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58(2):536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MH, Steinbüchel A (2009) Poly (3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75(19):6222–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquel N et al (2008) Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J 39(1):15–27

    Article  CAS  Google Scholar 

  • Jendrossek D et al (1993) Degradation of poly (3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J Environ Polym Degrad 1(1):53–63

    Article  CAS  Google Scholar 

  • Jung K et al (2001) Two-stage continuous process development for the production of medium-chain-length poly (3-hydroxyalkanoates). Biotechnol Bioeng 72(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • KatırcıoÄŸlu H et al (2003) Production of poly-β-hydroxybutyrate (PHB) and differentiation of putative Bacillus mutant strains by SDS-PAGE of total cell protein. Afr J Biotechnol 2(6):147–149

    Article  Google Scholar 

  • Keenan TM et al (2006) Polyhydroxyalkanoate copolymers from forest biomass. J Ind Microbiol Biotechnol 33(7):616

    Article  CAS  PubMed  Google Scholar 

  • Kepka C et al (2003) Pilot-scale extraction of an intracellular recombinant cutinase from E. coli cell homogenate using a thermoseparating aqueous two-phase system. J Biotechnol 103(2):165–181

    Article  CAS  PubMed  Google Scholar 

  • Kessler B, et al. (2001) Production of microbial polyesters: fermentation and downstream processes. Biopolyesters, Springer: 159–182

    Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619

    Article  CAS  Google Scholar 

  • Khosravi-Darani K et al (2003) Solubility of poly (β-hydroxybutyrate) in supercritical carbon dioxide. J Chem Eng Data 48(4):860–863

    Article  CAS  Google Scholar 

  • Kim HW et al (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97

    PubMed  Google Scholar 

  • Kim YB and Lenz RW (2001) Polyesters from microorganisms. Biopolyesters, Springer: 51–79

    Google Scholar 

  • Koller M (2016) Recent advances in biotechnology volume, 1: microbial biopolyester production, performance and processing microbiology, feedstocks, and metabolism. Bentham Science Publishers

    Google Scholar 

  • Koller M et al (2005) Biotechnological production of poly (3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatal Biotransformation 23(5):329–337

    Article  CAS  Google Scholar 

  • Koller M, et al. (2007a) Biosynthesis of high quality polyhydroxyalkanoate co-and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromolecular symposia, Wiley Online Library

    Google Scholar 

  • Koller M et al (2007b) Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7(2):218–226

    Article  CAS  PubMed  Google Scholar 

  • Koller M, et al. (2010) Microbial PHA production from waste raw materials. Plastics from bacteria, Springer: 85–119

    Google Scholar 

  • Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620

    Article  Google Scholar 

  • Kunioka M et al (1989) Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Alcaligenes eutrophus. Appl Microbiol Biotechnol 30(6):569–573

    Article  CAS  Google Scholar 

  • Lageveen RG et al (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langenbach S et al (1997) Functional expression of the PHA synthase gene pha C1 from Pseudomonas aeruginosa in Escherichia coli results in poly (3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150(2):303–309

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996a) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996b) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14(11):431–438

    Article  CAS  Google Scholar 

  • Lee SY, Choi J-i (1999) Production and degradation of polyhydroxyalkanoates in waste environment. Waste Manag 19(2):133–139

    Article  CAS  Google Scholar 

  • Lee W-H et al (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99(15):6844–6851

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly (3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209(1):135–150

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Steinbüchel A (1993) Cloning and molecular analysis of the poly (3-hydroxybutyric acid) biosynthetic genes of Thiocystis violacea. Appl Microbiol Biotechnol 38(4):493–501

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M et al (1993) Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusal composition. Appl Microbiol Biotechnol 40(2–3):292–300

    CAS  Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci 89(3):839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majid M et al (1999) Production of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Erwinia sp. USMI-20. Int J Biol Macromol 25(1–3):95–104

    Article  CAS  PubMed  Google Scholar 

  • Mergaert J et al (1993) Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59(10):3233–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergaert J et al (1994) Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in compost. J Environ Polym Degrad 2(3):177–183

    Article  CAS  Google Scholar 

  • Moskowitz GJ, Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate. II. Enzymic synthesis of D-(−)-β-hydroxybutyryl coenzyme A by an enoyl hydrase from Rhodospirillum rubrum. Biochemistry 8(7):2748–2755

    Article  CAS  PubMed  Google Scholar 

  • Muhammadi et al (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Article  Google Scholar 

  • Nakayama K et al (1985) Purification and properties of extracellular poly (3-hydroxybutyrate) depolymerases from Pseudomonas lemoignei. Biochim Biophys Acta. Protein Structure and Molecular Enzymology 827(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa T et al (2002) Cloning and molecular analysis of poly (3-hydroxyalkanoate) biosynthesis genes in Pseudomonas aureofaciens. Curr Microbiol 44(2):132–135

    Article  CAS  PubMed  Google Scholar 

  • Ojumu T et al (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24

    Article  CAS  Google Scholar 

  • Ostle AG, Holt J (1982) Nile blue a as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ et al (2002) Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol Lett 214(2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Patnaik PR (2005) Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Crit Rev Biotechnol 25(3):153–171

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y et al (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13(2):142

    CAS  PubMed  Google Scholar 

  • Povolo S and Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromolecular symposia, Wiley Online Library

    Google Scholar 

  • Pozo C et al (2002) Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon source. J Biotechnol 97(2):125–131

    Article  CAS  PubMed  Google Scholar 

  • Qi Q et al (1997) Synthesis of poly (3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157(1):155–162

    Article  CAS  PubMed  Google Scholar 

  • Raza ZA et al (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56

    Article  CAS  Google Scholar 

  • Ren Q et al (2000) FabG, an NADPH-dependent 3-Ketoacyl Reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length Poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182(10):2978–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribera RG et al (2001) Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills (alpechin). Electron J Biotechnol 4(2):11–12

    Google Scholar 

  • Rusendi D, Sheppard JD (1995) Hydrolysis of potato processing waste for the production of poly-β-hydroxybutyrate. Bioresour Technol 54(2):191–196

    Article  CAS  Google Scholar 

  • Saharan B, Ankita SD (2012) Bioplastics-for sustainable development: a review. Int J Microbial Res Technol 1:11–23

    Google Scholar 

  • Saito Y et al (1996) Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39(3):169–174

    Article  CAS  Google Scholar 

  • Sanghavi DM (2006) Preschool puberty, and a search for the causes. New York Times 156(D1):D6

    Google Scholar 

  • Satoh H et al (1998) Activated sludge as a possible source of biodegradable plastic. Water Sci Technol 38(2):103–109

    Article  CAS  Google Scholar 

  • Sayyed R et al (2009) Hypochlorite digestion method for efficient recovery of PHB from Alcaligenes faecalis. Indian J Microbiol 49(3):230–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer A et al (1993) Degradation of poly (3-hydroxyoctanoic acid)[P (3HO)] by bacteria: purification and properties of a P (3HO) depolymerase from Pseudomonas fluorescens GK13. Appl Environ Microbiol 59(4):1220–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son H et al (1996) Growth-associated production of poly-β-hydroxybutyrate from glucose or alcoholic distillery wastewater by Actinobacillus sp. EL-9. Biotechnol Lett 18(11):1229–1234

    Article  CAS  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419–427

    Article  PubMed  Google Scholar 

  • Steinbüchel A, Schlegel H (1991) Physiology and molecular genetics of poly (β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5(3):535–542

    Article  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228

    Article  Google Scholar 

  • Sudesh K et al (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  • Suriyamongkol P et al (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25(2):148–175

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T et al (1986) Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24(5):370–374

    Article  CAS  Google Scholar 

  • Verlinden RA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Witholt B, Kessler B (1999) Perspectives of medium chain length poly (hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10(3):279–285

    Article  CAS  PubMed  Google Scholar 

  • Yan S et al (2008) Bioplastics from waste activated sludge-batch process. Pract Period Hazard Toxic Radioactive Waste Manage 12(4):239–248

    Article  CAS  Google Scholar 

  • Yellore V, Desai A (1998) Production of poly-3-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett Appl Microbiol 26(6):391–394

    Article  CAS  PubMed  Google Scholar 

  • Young FK et al (1994) Microbial production of poly-β-hydroxybutyric acid from D-xylose and lactose by Pseudomonas cepacia. Appl Environ Microbiol 60(11):4195–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalasiewicz J et al (2016) The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13:4–17

    Article  Google Scholar 

  • Zinn M et al (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thamilselvan, H. et al. (2021). Bioplastics: Fundamentals to Application. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_14

Download citation

Publish with us

Policies and ethics