Skip to main content
Log in

Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase fromComamonas sp.

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54 450–472.

    PubMed  Google Scholar 

  2. G. N. Bernard and J. K. M. Sanders (1989)J. Biol. Chem. 264 3286–3291.

    PubMed  Google Scholar 

  3. H. Blum, H. Beier, and H. J. Gross (1987)Electrophoresis 8 93–99.

    Google Scholar 

  4. H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller (1988)Appl. Environ. Microbiol. 54 1977–1982.

    Google Scholar 

  5. D. Byrom (1990) in E. A. Dawes (Ed.),Novel Biodegradable Microbial Polymers, Kluwer Academic Publishers, Dordrecht, pp. 113–117.

    Google Scholar 

  6. A. A. Chowdhury (1963)Arch. Mikrobiol. 47 167–200.

    PubMed  Google Scholar 

  7. S. Coulombe, P. Schauwecker, R. H. Marchessault, and B. Hauttecoeur (1978)Macromolecules 11 279–281.

    Google Scholar 

  8. F. P. Delafield, K. E. Cooksey, and M. Doudoroff (1965)J. Biol. Chem. 240 4023–4028.

    PubMed  Google Scholar 

  9. F. P. Delafield, M. Doudoroff, N. J. Palleroni, C. J. Lusty, and R. Contopoulos (1965)J. Bacteriol. 90 1455–1466.

    PubMed  Google Scholar 

  10. M. J. de Smet, G. Eggink, B. Witholt, J. Kingma, and H. Wynberg (1983)J. Bacteriol. 154 870–878.

    PubMed  Google Scholar 

  11. W. G. C. Forsyth, A. C. Hayward, and R. B. Roberts (1958)Nature (London) 182 800–801.

    PubMed  Google Scholar 

  12. R. Griebel, Z. Smith, and J. M. Merrick (1968)Biochemistry 7 3676–3681.

    PubMed  Google Scholar 

  13. H. Hippe and H. G. Schlegel (1967)Arch. Mikrobiol. 56 278–299.

    PubMed  Google Scholar 

  14. P. H. Janssen and C. G. Harfoot (1990)Arch. Microbiol. 154 253–259.

    Google Scholar 

  15. U. K. Laemmli (1970)Nature (London) 227 680–685.

    PubMed  Google Scholar 

  16. R. G. Lageveen, G. W. Huismann, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt (1988)Appl. Environ. Microbiol. 54 2924–2930.

    Google Scholar 

  17. C. J. Lusty and M. Doudoroff (1966)Proc. Natl. Acad. Sci. USA 56 960–965.

    PubMed  Google Scholar 

  18. J. M. Merrick and M. Doudoroff (1964)J. Bacteriol. 88 60–71.

    PubMed  Google Scholar 

  19. J. M. Merrick (1965)J. Bacteriol. 90 965–969.

    PubMed  Google Scholar 

  20. J. M. Merrick, G. Lundgren, and R. M. Pfister (1965)J. Bacteriol. 89 234–239.

    PubMed  Google Scholar 

  21. K. Nakayama, T. Saito, T. Fukui, Y. Shirakura, and K. Tomita (1985)Biochim. Biophys. Acta 827 63–72.

    PubMed  Google Scholar 

  22. T. Saito, K. Suzuki, J. Yamamoto, T. Fukui, K. Miwa, K. Tomita, S. Nakanishi, S. Odani, J.-I. Suzuki, and K. Ishikawa (1989)J. Bacteriol. 171 184–189.

    PubMed  Google Scholar 

  23. H. G. Schlegel, G. Gottschalk, and R. v. Bartha (1961)Nature (London) 191 463–465.

    PubMed  Google Scholar 

  24. H. G. Schlegel, H. Kaltwasser, and G. Gottschalk (1961)Arch. Mikrobiol. 117 475–481.

    Google Scholar 

  25. H. G. Schlegel and G. Gottschalk (1962)Angew. Chem. 74 342–347.

    Google Scholar 

  26. J. P. Segrest and R. L. Jackson (1972)Methods Enzymol. 28 54–63.

    Google Scholar 

  27. Y. Shirakura, T. Fukui, T. Tanio, K. Nakayama, R. Matsuno, and K. Tomita (1983)Biochim. Biophys. Acta 748 331–333.

    PubMed  Google Scholar 

  28. Y. Shirakura, T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, and S. Masamune (1986)Biochim. Biophys. Acta 880 46–53.

    PubMed  Google Scholar 

  29. C. W. Shuster and M. Doudoroff (1962)J. Biol. Chem. 237 603–607.

    PubMed  Google Scholar 

  30. H. Stegemann, H. Francksen, and V. Macko (1973)Z. Naturforsch. 28c 722–732.

    Google Scholar 

  31. A. Steinbüchel (1991)Nachr. Chem. Tech. Lab. 39 1116–1123.

    Google Scholar 

  32. A. Steinbüchel (1991) in D. Byrom (Ed.),Biomaterials, Macmillan Press, London, pp. 123–213.

    Google Scholar 

  33. A. Steinbüchel and H. G. Schlegel (1991)Mol. Microbiol. 5 535–542.

    PubMed  Google Scholar 

  34. A. Steinbüchel, K. A. Malik, and D. Jendrossek (1992) Proceedings of the Pacific Biotechnology Congress in Los Banos/Philippines, in press.

  35. M. W. Stinson and J. M. Merrick (1974)J. Bacteriol. 119 152–161.

    PubMed  Google Scholar 

  36. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, and S. Masamune (1982)Eur. J. Biochem. 124 71–77.

    PubMed  Google Scholar 

  37. A. Timm, D. Byrom, and A. Steinbüchel (1990)Appl. Microbiol. Biotechnol. 33 296–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jendrossek, D., Knoke, I., Habibian, R.B. et al. Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase fromComamonas sp.. J Environ Polym Degr 1, 53–63 (1993). https://doi.org/10.1007/BF01457653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01457653

Key words

Navigation