Skip to main content

Modeling Seed Germination Response to Salinity at Different Accelerated Aging Period in Canola

  • Chapter
  • First Online:
Advances in Seed Production and Management

Abstract

Canola is the second largely produced oilseed crop behind soybeans which is known as an important source of vegetable oil, being used in the food, feed, and biofuel feedstock. Seed aging is a serious problem in this plant particularly if the seeds are exposed to salinity stress during their germination stage. In this work, therefore, we applied both halotime and aging models to quantify the effect of the accelerated aging test period (AATP) and salinity (NaCl) on seed germination (SG) response of this plant. The seed moisture content (SMC) and electrical conductivity (EC) in response to AATP were also investigated. Based on our results, SG characteristics (i.e., germination percentage (GP) and germination rate (GR)) are significantly affected by AATP, NaCl, and their interactions (p < 0.01). These models successfully described the SG response of canola seeds (R 2 > 0.87). Based on the model parameters, the SG of canola was totally inhibited at 82.1 h AATP and 341.1 mM NaCl, respectively. Both SMC and EC increased significantly with the AATP, reflecting the loss of membrane integrity which is directly related to a decrease in SG and vigor. The parameters estimated in this study can be used for simulating canola SG as well as.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul-Baki AA, Anderson JD (1972) Physiological and biochemical deterioration of seeds. Seed biology 2:283–316

    CAS  Google Scholar 

  • Ahmad P, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54(3):89–99

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:61–68

    Article  Google Scholar 

  • Al-Thabet S, Leilah A, Al-Hawass I (2004) Effect of NaCl and incubation temperature on seed germination of three canola (Brassica napus L.) cultivars. Sci King Faisal Univ Basic Appl Sci 5(1):81–92

    Google Scholar 

  • Alvarado V, Bradford K (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25(8):1061–1069

    Article  Google Scholar 

  • Baalbaki R, Elias S, Marcos Filho J, McDonald MB (2009) Seed vigor testing handbook: contribuition n. 32 to The handbook on seed testing

    Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14(2):93–107

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Atashi S, Hafeznia M, Pirdashti H, da Silva JAT (2015) Hydrothermal time analysis of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination. Acta Physiologiae Plantarum 37(1):1738

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Ghadiryan R, Galeshi S, Soltani E (2011) Modelling the effects water stress and temperature on seed germination of soybean (Glycine max L.) and velvetleaf (Abutilon theophrasti med.). J Plant Prod 18:29–45

    Google Scholar 

  • Bakhshandeh E, Gholamhossieni M (2018) Quantification of soybean seed germination response to seed deterioration under peg-induced water stress using hydrotime concept. Acta Physiol Plant 40(7):126

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Vahabinia F, Gholamhossieni M (2019) Quantification of the effect of environmental factors on seed germination and seedling growth of eruca (Eruca sativa) using mathematical models. J Plant Growth Regul 39:190–204

    Article  CAS  Google Scholar 

  • Balešević-Tubić S, Tatić M, Miladinović J, Pucarević M (2007) Changes of faty acids content and vigor of sunflower seed during natural aging/cambios de contenido de ácidos grasos y germinación durante el envejecimiento natural de la semilla de girasol/changements du contenu d’acides gras et de la vigueur de la graine de tournesol au cours du vieillissement naturel. Helia 30(47):61–68

    Article  Google Scholar 

  • Bayat P, Ghobadi M, Ghobadi ME, Mohammadi G (2016) Calibration of accelerated aging test as a vigor test to predict the seedling emergence of chickpea (Cicer arietinum L.) in field conditions. Iran J Pulses Res 7:9–24

    Google Scholar 

  • Bello P, Bradford KJ (2016) Single-seed oxygen consumption measurements and population-based threshold models link respiration and germination rates under diverse conditions. Seed Sci Res 26(3):199–221

    Article  CAS  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germination and dormancy. Springer Science & Business Media, New York

    Google Scholar 

  • Botía P, Carvajal M, Cerdá A, Martínez V (1998) Response of eight Cucumis melo cultivars to salinity during germination and early vegetative growth. Agronomie 18(8-9):503–513

    Article  Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50(2):248–260

    Article  CAS  Google Scholar 

  • Bradford KJ (2005) Threshold models applied to seed germination ecology. New Phytol 165(2):338–341

    Article  PubMed  Google Scholar 

  • Bradford KJ (2018) Interpreting biological variation: seeds, populations and sensitivity thresholds. Seed Sci Res 28(3):158–167

    Article  Google Scholar 

  • Bradford KJ, Benech-Arnold RL, Coˆme D, Corbineau F (2008) Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model. J Exp Bot 59(2):335–347

    Article  CAS  PubMed  Google Scholar 

  • Bradford KJ, Haigh AM (1994) Relationship between accumulated hydrothermal time during seed priming and subsequent seed germination rates. Seed Sci Res 4(2):63–69

    Article  Google Scholar 

  • Bradford KJ, Somasco OA (1994) Water relations of lettuce seed thermoinhibition. I. Priming and endosperm effects on base water potential. Seed Sci Res 4(1):1–10

    Article  Google Scholar 

  • Bradford KJ, Tarquis AM, Durán JM (1993) A population-based threshold model describing the relationship between germination rates and seed deterioration. J Exp Bot 44(7):1225–1234

    Article  Google Scholar 

  • Bybordi A (2012) Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. J Integr Agric 11(10):1610–1620

    Article  CAS  Google Scholar 

  • Bybordi A, Tabatabaei SJ, Ahmadev A (2010) The influence of salinity stress on antioxidant activity in canola cultivars (Brassica napus L.). J Food Agric Environ 8(1):122–127

    CAS  Google Scholar 

  • Carruthers JM, Cook SM, Wright GA, Osborne JL, Clark SJ, Swain JL, Haughton AJ (2017) Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GCB Bioenergy 9(8):1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Sung J (1998) Deteriorative changes in primed sweet corn seeds during storage. Seed Sci Technol 26(3):613–625

    Google Scholar 

  • Copeland L, McDonald M (1985) Principles of seed science and technology, 2nd edn. Edición Burguess Publising Company, 321 pp

    Google Scholar 

  • Copeland LO, McDonald MB (2001) Seed vigor and vigor testing. In: Principles of seed science and technology. Springer, New York, pp 165–191

    Chapter  Google Scholar 

  • Corbineau F, Picard MA, Fougereux J-A, Ladonne F, Côme D (2000) Effects of dehydration conditions on desiccation tolerance of developing pea seeds as related to oligosaccharide content and cell membrane properties. Seed Sci Res 10(3):329–339

    Article  CAS  Google Scholar 

  • Cuartero J, Fernández-Muñoz R (1998) Tomato and salinity. Sci Hortic 78(1-4):83–125

    Article  Google Scholar 

  • Delouche JC, Baskin CC (2016) Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol J 1:427–452

    Google Scholar 

  • Derakhshan A, Gharineh MH (2015) Application of hydrotime concept to predict seedling emergence of spring barley varieties in field. Iran J Seed Sci Res 2(2):1–14

    Google Scholar 

  • Ebadie A, Parmoon G, Jahanbakhah S (2016) Effect of potassium nitrate on antioxidant enzymes activity of aged milk thistle (Silybum marianum) seeds. J Plant Process Funct 36(16):27–44

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31(4):861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

    Article  Google Scholar 

  • El-Maarouf-Bouteau H, Mazuy C, Corbineau F, Bailly C (2011) DNA alteration and programmed cell death during ageing of sunflower seed. J Exp Bot 62(14):5003–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias S, Copeland L (1997) Evaluation of seed vigor tests for canola. Seed Technol 19:78–87

    Google Scholar 

  • Ellis R, Hong T, Roberts E, Tao K-L (1990) Low moisture content limits to relations between seed longevity and moisture. Ann Bot 65(5):493–504

    Article  Google Scholar 

  • Ellis R, Roberts E (1980) The influence of temperature and moisture on seed viability period in barley (Hordeum distichum L.). Ann Bot 45(1):31–37

    Article  Google Scholar 

  • FAO (2016) FAOSTAT/Productionstat/Crops [Online]. Food and Agriculture Organization of the United Nations. Revised on 28 May 2018. http://www.fao.org/faostat/en/#data/QC

  • Garcia-Huidobro J, Monteith J, Squire G (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. J Exp Bot 33(2):288–296

    Article  Google Scholar 

  • Garza-Caligaris LE, Avendaño-Vázquez AO, Alvarado-López S, Zúñiga-Sánchez E, Orozco-Segovia A, Pérez-Ruíz RV, Gamboa-deBuen A (2012) At3g08030 transcript: a molecular marker of seed ageing. Ann Bot 110(6):1253–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaderi-Far F, Bakhshandeh E, Ghadirian R (2010) Evaluating seed quality in sesame (Sesamum indicum L.) by the accelerated ageing test. Seed Technol 32:69–72

    Google Scholar 

  • Gilbertson PK, Berti MT, Johnson BL (2014) Borage cardinal germination temperatures and seed development. Ind Crop Prod 59:202–209

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190

    Article  CAS  Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Gummerson R (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet. J Exp Bot 37(6):729–741

    Article  Google Scholar 

  • Hameed A, Rasheed A, Gul B, Khan MA (2014) Salinity inhibits seed germination of perennial halophytes Limonium stocksii and Suaeda fruticosa by reducing water uptake and ascorbate dependent antioxidant system. Environ Exp Bot 107:32–38

    Article  CAS  Google Scholar 

  • Hampton J, Tekrony D (1995) Accelerated aging test. Handbook of vigour tests methods. pp 1–10

    Google Scholar 

  • Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M-H, Leckband G, Abbadi A, Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2.−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179(1):33–54

    Article  CAS  PubMed  Google Scholar 

  • International Seed Testing Association (ISTA) (2009) International rules for seed testing. International Seed Testing Association, Zurich

    Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166(6):667–674

    Article  CAS  PubMed  Google Scholar 

  • Jayas DS, White ND (2003) Storage and drying of grain in Canada: low cost approaches. Food Control 14(4):255–261

    Article  Google Scholar 

  • Kandil A, Sharief A, Sheteiwy M (2013) Effect of seed storage periods, conditions and materials on germination of some soybean seed cultivars. Am J Exp Agric 3(4):1020

    Google Scholar 

  • Kayacetin F, Efeoglu B, Alizadeh B (2018) Effect of NaCl and PEG-induced osmotic stress on germination and seedling growth properties in wild mustard (Sinapis arvensis L.). Anadolu 28(1):62–68

    Google Scholar 

  • Khajeh-Hosseini M, Powell A, Bingham I (2003) The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Sci Technol 31(3):715–725

    Article  Google Scholar 

  • Khaliliaqdam N, Soltani A, Latifi N, Ghaderi Far F (2013) Soybean seed aging and environmental factors on seedling growth. Commun Soil Sci Plant Anal 44(12):1786–1799

    Article  CAS  Google Scholar 

  • Kumar TP, Asha A, Maruthi J, Vishwanath K (2014) Influence of seed treatment chemicals and containers on seed quality of marigold during storage. Bioscan 9(3):937–942

    Google Scholar 

  • Luan Z, Xiao M, Zhou D, Zhang H, Tian Y, Wu Y, Guan B, Song Y (2014) Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.). Scientific World J 2014:170418

    Article  Google Scholar 

  • Matthews S, Wagner M, Ratzenboeck A, Khajeh-Hosseini M, Casarini E, El-Khadem R, El-Yakhlifi M, Powell A (2011) Early counts of radicle emergence during germination as a repeatable and reproducible vigour test for maize. Seed Testing Int 141:39–45

    Google Scholar 

  • Mazza G (2007) Anthocyanins and heart health. Annali-Istituto Superiore Di Sanita 43(4):369

    CAS  Google Scholar 

  • McDonald M (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • Merritt D, Senaratna T, Touchell D, Dixon K, Sivasithamparam K (2003) Seed ageing of four Western Australian species in relation to storage environment and seed antioxidant activity. Seed Sci Res 13(2):155–165

    Article  Google Scholar 

  • Mohammadi H, Soltani A, Sadeghipour H, Zeinali E (2012) Effects of seed aging on subsequent seed reserve utilization and seedling growth in soybean. Int J Plant Product 5(1):65–70

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Panuccio M, Eshel A (2013) Ecophysiology of Pennisetum clandestinum: a valuable salt tolerant grass. Environ Exp Bot 92:55–63

    Article  CAS  Google Scholar 

  • Najafi G, Khamary S, Javadi A (2015) The response of rapeseed seed germination to seed vigor and hydro-priming changes. J Seed Res 5:54–70

    Google Scholar 

  • Ni B-R, Bradford KJ (1993) Germination and dormancy of abscisic acid-and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds (sensitivity of germination to abscisic acid, gibberellin, and water potential). Plant Physiol 101(2):607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odoba A, Odiaka N, Gbanguba A, Bashiru M (2016) Germination characteristics of twenty varieties of soybean (Glycine max (L.) Merr) stored for seven months. Sci Agric 13(3):151–155

    Google Scholar 

  • Pedras MSC, Zheng Q-A, Gadagi RS, Rimmer SR (2008) Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 69(4):894–910

    Article  CAS  PubMed  Google Scholar 

  • Powell AA (1986) Cell membranes and seed leachate conductivity in relation to the quality of seed for sowing. J Seed Technol 10:81–100

    Google Scholar 

  • Priestley DA (1986) Seed aging: implications for seed storage and persistence in the soil. Comstock Associates, Ithaca, NY

    Google Scholar 

  • Radha B, Channakeshava B, Bhanuprakash K, Pandurange Gowda K, Ramachandrappa B, Munirajappa R (2014) DNA damage during seed ageing. IOSR J Agric Vet Sci 7:34–39

    Google Scholar 

  • Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148(1):620–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JMV, Lopez S, Vázquez E, Murillo E (1988) DNA integrity and DNA polymerase activity in deteriorated maize embryo axes. J Plant Physiol 133(5):600–604

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc (2013) SAS/STAT user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Seal CE, Barwell LJ, Flowers TJ, Wade EM, Pritchard HW (2018) Seed germination niche of the halophyte Suaeda maritima to combined salinity and temperature is characterised by a halothermal time model. Environ Exp Bot 155:177–184

    Article  CAS  Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen S-E (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J Plant Physiol 170(10):906–914

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Sidari M, Santonoceto C, Anastasi U, Preiti G, Muscolo A (2008) Variations in four genotypes of lentil under NaCl-salinity stress. American Journal of Agriculture and Biological Science 3:410–416

    Article  Google Scholar 

  • Siger A, Nogala-Kalucka M, Lampart-Szczapa E (2008) The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J Food Lipids 15(2):137–149

    Article  CAS  Google Scholar 

  • Silva VN, da Silveira TJ (2014) Canola seed germination and seedling initial growth under conditions of salinity. Científica 42(3):265–270

    Article  Google Scholar 

  • Soltani E, Farzaneh S (2014) Hydrotime analysis for determination of seed vigour in cotton. Seed Sci Technol 42(2):260–273

    Article  Google Scholar 

  • Still DW, Bradford KJ (1998) Using hydrotime and ABA-time models to quantify seed quality of Brassicas during development. J Am Soc Hortic Sci 123(4):692–699

    Article  CAS  Google Scholar 

  • Sung J, Jeng T (1994) Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging of peanut seed. Physiol Plant 91(1):51–55

    Article  CAS  Google Scholar 

  • Szydłowska-Czerniak A, Bartkowiak-Broda I, Karlović I, Karlovits G, Szłyk E (2011) Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chem 127(2):556–563

    Article  PubMed  CAS  Google Scholar 

  • Szydłowska-Czerniak A, Trokowski K, Karlovits G, Szłyk E (2010) Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. J Agric Food Chem 58(13):7502–7509

    Article  PubMed  CAS  Google Scholar 

  • Taherkhani T, Rahmani N, Pazoki A (2013) The effect of hydro-priming on germination of mustard seeds under draught stress conditions. Life Sci J 10(3s)

    Google Scholar 

  • Tatipata A (2009) Effect of seed moisture content packaging and storage period on mitochondria inner membrane of soybean seed. J Agric Technol 5(1):51–64

    Google Scholar 

  • Vahabinia F, Pirdashti H, Bakhshandeh E (2019) Environmental factors’ effect on seed germination and seedling growth of chicory (Cichorium intybus L.) as an important medicinal plant. Acta Physiologiae Plantarum 41(2):27

    Article  CAS  Google Scholar 

  • Van’t Hoff JH (1887) The role of osmotic pressure in the analogy between solutions and gases. Z fur phys Chem 1:481–508

    Google Scholar 

  • Wang P, Mo B, Long Z, Fan S, Wang H, Wang L (2016) Factors affecting seed germination and emergence of Sophora davidii. Ind Crop Prod 87:261–265

    Article  CAS  Google Scholar 

  • Wilson Jr D, McDonald Jr M (1992) Mechanical damage in bean (Phaseolus vulgaris L.) seed in mechanized and non-mechanized threshing systems. In: Proceedings of the International Seed Testing Association

    Google Scholar 

  • Wu G-Q, Jiao Q, Shui Q-Z (2015) Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). Plant Soil Environ 61(5):220–226

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is supported by the Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT) and Sari Agricultural Sciences and Natural Resources University (SANRU) research grant (D.2169.97.31). We also gratefully acknowledge the use of the services and facilities of the GABIT during this research.

Declarations of interest: none.

Author Contribution Statement: EB, MJ, and RA designed the experiment. EB and MJ collected the data. EB conducted the modeling and interpreted the data. EB, MJ, RA, and FB co-wrote all drafts of this chapter and also approved the final draft for submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Bakhshandeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakhshandeh, E., Jamali, M., Abdellaoui, R., Boughalleb, F. (2020). Modeling Seed Germination Response to Salinity at Different Accelerated Aging Period in Canola. In: Tiwari, A.K. (eds) Advances in Seed Production and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-4198-8_22

Download citation

Publish with us

Policies and ethics