Skip to main content

Advertisement

Log in

Hydrothermal time analysis of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study evaluated the ability of a hydrothermal time model (HTT) to describe the kinetics of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination under different temperatures (T) and water potentials (ψ) and also to determine the cardinal temperatures of watermelon. Results indicated that ψ influenced germination rate and germination percentage. For this seed lot, cardinal temperatures were 10 °C for T b, 28.34 °C for T o and 40.8 °C for T c in the control (0 MPa) treatment. There was a decrease in hydrotime constant (θ H) when T was increased to T o and then remained constant at supra-optimal temperatures (30 MPah−1). Also, at temperatures above T o, ψ b(50) values increased linearly with T. The k T value (the slope of the relationship between ψ b(50) and T exceeds T o) of this seed lot was calculated as 0.076 MPa°Ch−1. Results this study show that when the HTT model is applied, it can accurately describe ψ b(g) and the course of germination around Ts (R 2 = 0.82). Moreover, the ψ b(50) was estimated to be −0.96 MPa based on this model. Consequently, the germination response of watermelon for all Ts and ψs can be adequately described by the HTT model and enabling it to be used as a predictive tool in watermelon seed germination simulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FGP:

Final germination percentage

GP:

Germination percentage

GR:

Germination rate

HTT:

Hydrothermal time model

k T :

The slope of the relationship between ψb(50) and T exceeds T o

MPa:

Megapascal

T :

Temperature

T b :

Minimum temperature

T c :

Maximum temperature

t g :

The time required for a fraction or percentage of germination

T o :

Optimum temperature

TT:

Thermal time model

θ H :

Hydrotime model

σψ b :

Standard deviation of ψ b within the seed population

ψ :

Water potential

ψ b(50) :

The base ψ of the 50th percentile

ψ b :

Base water potential

References

  • Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell Environ 25:1061–1069. doi:10.1046/j.1365-3040.2002.00894.x

    Article  Google Scholar 

  • Atashi S, Bakhshandeh E, Mehdipour M, Jamali M, Teixeira da Silva JA (2014a) Application of a hydrothermal time seed germination model using the Weibull distribution to describe base water potential in zucchini (Cucurbita pepo L.). J Plant Growth Regul. doi:10.1007/s00344-014-9452-y

    Google Scholar 

  • Atashi S, Bakhshandeh E, Zeinali Z, Yassari E, Teixeira da Silva JA (2014b) Modeling seed germination in Melisa officinalis L. in response to temperature and water potential. Acta Physiol Plant 36:605–611. doi:10.1007/s11738-013-1436-1

    Article  Google Scholar 

  • Bakhshandeh E, Atashi S, Hafea-Nia M, Pirdashti HA (2013) Quantification of the response of germination rate to temperature in sesame (Sesamum indicum). Seed Sci Technol 41:469–473

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, p 1600

    Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York, p 407

    Book  Google Scholar 

  • Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849. doi:10.1104/pp.94.2.840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260. doi:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2

    Article  CAS  Google Scholar 

  • Bradford KJ, Still DV (2004) Applications of hydrotime analysis in seed testing. Seed Technol 26:75–85

    Google Scholar 

  • Dahal P, Bradford KJ (1990) Effects of priming and endosperm integrity on seed germination rates of tomato genotypes II. Germination at reduced water potential. J Exp Bot 41:1441–1453. doi:10.1093/jxb/41.11.1441

    Article  Google Scholar 

  • Dahal P, Bradford KJ (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci Res 4:71–80. doi:10.1017/S0960258507383141

    Article  Google Scholar 

  • Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Hortic 102:467–473. doi:10.1016/j.scienta.2004.04.012

    Article  Google Scholar 

  • Garcia AL, Recasens J, Forcella F, Torra J, Royo-Esnal A (2013) Hydrothermal emergence model for ripgut brome (Bromus diandrus). Weed Sci 61:146–153. doi:10.1614/WS-D-12-00023.1

    Article  CAS  Google Scholar 

  • Grundy A, Phelps K, Reader R, Burston S (2000) Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytol 148:433–444. doi:10.1046/j.1469-8137.2000.00778.x

    Article  Google Scholar 

  • Gummerson R (1986) The effect of constant temperatures and osmotic potential on the germination of sugar beet. J Exp Bot 41:1431–1439. doi:10.1093/jxb/41.11.1431

    Google Scholar 

  • Kebreab E, Murdoch AJ (1999) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J Exp Bot 50:655–664. doi:10.1093/jxb/50.334.655

    Article  CAS  Google Scholar 

  • Kebreab E, Murdoch AJ (2000) The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Seed Sci Res 10:127–133. doi:10.1017/S0960258500000131

    Google Scholar 

  • Kurtar ES (2010) Modelling the effect of temperature on seed germination in some cucurbits. African J Biotech 9:1343–1353

    Google Scholar 

  • Maynard DN, Hochmuth GJ (2007) Knott’s handbook for vegetable growers, 5th edn. Wiley, USA, p 630

    Google Scholar 

  • Rowse HR, Finch-Savage WE (2003) Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytol 158:101–108. doi:10.1046/j.1469-8137.2003.00707.x

    Article  Google Scholar 

  • SAS Institute (2004) SAS/STAT user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Schutte BJ, Regnier EE, Harrison SK, Schmoll JT, Spokas K, Forcella F (2008) A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Sci 56:555–560. doi:10.1614/WS-07-161.1

    Article  CAS  Google Scholar 

  • Singh S, Singh P, Sanders DC, Wehner TC (2001) Germination of watermelon seeds at low temperature. Rep Cucurbit Genet Coop 24:59–64

    Google Scholar 

  • Vleeshouwers L, Kropff M (2000) Modelling field emergence patterns in arable weeds. New Phytol 148:445–457. doi:10.1046/j.1469-8137.2000.00773.x

    Article  Google Scholar 

  • Wang R (2005) Modeling seed germination and seedling emeregence in winterfat (Krascheninnikovia lanata (Pursh) A.D.J. Meeuse & Smit): physiological mechanisms and ecoligical relevance. Ph.D. thesis, University of Saskatchewan, p 190

  • Watt MS, Xu V, Bloomberg M (2010) Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecol Modelling 221:1267–1272. doi:10.1016/j.ecolmodel.2010.01.017

    Article  Google Scholar 

  • Watt MS, Bloomberg M, Finch-Savage WE (2011) Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell Environ 34:870–876. doi:10.1111/j.1365-3040.2011.02292.x

    Article  CAS  Google Scholar 

  • Zhang H, Irving L, Tian Y, Zhou D (2012) Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African J Bot 78:203–210. doi:10.1016/j.sajb.2011.08.008

    Article  Google Scholar 

Download references

Acknowledgments

The advice and commentary provided by Dr. Kent J. Bradford (Department of Vegetable Crops, University of California, Davis, USA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Bakhshandeh.

Additional information

Communicated by A. Gniazdowska-Piekarska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshandeh, E., Atashi, S., Hafeznia, M. et al. Hydrothermal time analysis of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination. Acta Physiol Plant 37, 1738 (2015). https://doi.org/10.1007/s11738-014-1738-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1738-y

Keywords

Navigation