Skip to main content

Genomics and Genetic Engineering to Develop Metal/Metalloid Stress-Tolerant Rice

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Rapid industrialization and urbanization gradually shrink the cultivable land worldwide. To meet the growing demand for food, excessive application of fertilizer/pesticide and irrigation with sewage/industry effluent result in contamination of arable land with heavy metals. Rice, a major staple food used worldwide specially in the Asian countries, is also affected by heavy metal (HM) toxicity. These HMs affect plant growth and metabolism negatively and decrease crop quality and productivity. They are also able to enter the food chain and affect human health. Lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), chromium (Cr), mercury (Hg), arsenic (As), and antimony (Sb) are some of the metals and metalloids found in contaminated soil. Both the essential and nonessential elements are taken up by the plants through different metal transporters. As more HMs are being transported into the plants, deficiencies of essential elements and oxidative stress may occur. As a defense mechanism, plants employ different strategies to mitigate the oxidative stress. Genetically engineered plants are developed in such a way that they are equipped with the production of enhanced stress tolerance protein/metal sequestration mechanism/efficient metal efflux system/modified metal transporters, which can make them more adaptable in HM stress condition. Cultivation of tolerant/genetically engineered genotypes can help to eliminate metal toxicity and accumulation in grains. Rice grown in As/Cd-contaminated sites causes accumulation of these metals in grains, which is deleterious for health. Transgenic rice engineered with As(III)-S-adenosyl methyl transferase (arsM) decreased As accumulation in rice grains, and by gene manipulation, Cd entry in rice grain can also be blocked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamu CI, Nganje TN (2010) Heavy metal contamination of surface soil in relationship to land use patterns: a case study of Benue State, Nigeria. Mater Sci Appl 1:127–134

    CAS  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD et al (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  CAS  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Anwar SM (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 49:473–479

    Article  CAS  Google Scholar 

  • Arenhart RA, Bai Y, de Oliveira LF, Neto LB, Schunemann M, Maraschin F et al (2013) New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7(4):709–721

    Article  CAS  Google Scholar 

  • Arenhart RA, Bai Y, de Oliveira LF, Neto LB, Schunemann M, Maraschin Fdos S, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M (2014) New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7(4):709–721

    Article  CAS  Google Scholar 

  • Ashraf U, Kanu AS, Mo ZW, Hussain S, Anjum SA, Khan I et al (2015) Lead toxicity in rice; effects, mechanisms and mitigation strategies-a mini review. Environ Sci Pollut Res 22:18318–18332

    Article  CAS  Google Scholar 

  • Audebert A, Fofana M (2009) Rice yield gap due to iron toxicity in West Africa. J Agron Crop Sci 195:66–76

    Article  CAS  Google Scholar 

  • Baize D (2009) Cadmium in soils and cereal grains after sewage-sludge application on French soils: a review. Agron Sustain Dev 29(1):175–184

    Article  CAS  Google Scholar 

  • Banakar R, Alvarez Fernández Á, Abadía J, Capell T, Christou P (2017) The expression of heterologous Fe (III) phytosiderophore transporter Hv YS 1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnol J 15:423–432

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Genetic engineering in plants for enhancing arsenic tolerance. In: MNV P (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Elsevier (Academic Press), Cambridge, MA, pp 463–475

    Google Scholar 

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:2195

    Article  Google Scholar 

  • Barcelo J, Poschenrieder C (1997) Chromium in plants. In: Canali S, Canali F, Tittarelli P, Sequi P (eds) Chromium environmental issues. Angelli Press, Milano, pp 101–130

    Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48(1):75–92

    Article  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3:122–130

    Article  Google Scholar 

  • Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK (2014) Transcriptomic analysis of rice in response to iron deficiency and excess. Rice 7:18

    Article  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132(2):618–628

    Article  CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251–261

    Article  CAS  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcuslanatus. Plant J 45:917–92910

    Article  CAS  Google Scholar 

  • Brandes EA, Greenaway HT, Stone HEN (1956) Ductility in chromium. Nature 178(4533):587

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel K, Lombi E, Newville M, Choi Y, Norton G, Charnock J, Feldmann J, Price A, Meharg AA (2009) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  Google Scholar 

  • Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Torres-Guzman J, Moreno Sanchez R (2001) Interactions of chromium with micro-organisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  Google Scholar 

  • Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong M (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89(10):1248–1254

    Article  CAS  Google Scholar 

  • Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma L (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Connorton JM, Balk J, Rodríguez-Celma J (2017) Iron homeostasis in plants: a brief overview. Metallomics 9:813–823

    Article  CAS  Google Scholar 

  • Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163(3):1353–1362

    Article  CAS  Google Scholar 

  • Dhankher OP (2005) Arsenic metabolism in plants: an inside story. New Phytol 168(3):503–505

    Article  CAS  Google Scholar 

  • Ding Y, Ye Y, Jiang Z, Wang Y, Zhu C (2016) MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Front Plant Sci 7:235

    Google Scholar 

  • Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177(4):1691–1703

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisumsativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687–690

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Shankar S, Adhikari B, Shukla Y, Trivedi P, Pandey V, Tripathi RD (2015a) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5:16205

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015b) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Dotaniya M, Meena HM, Lata M, Kumar K (2013) Role of phytosiderophores in iron uptake by plants. Agric Sci Dig 33:73–76

    CAS  Google Scholar 

  • Duan GL, Zhou Y, Tong Y, Mukhopadhyay R, Rosen BP, Zhu Y (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174(2):311–321

    Article  CAS  Google Scholar 

  • Duan GL, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  CAS  Google Scholar 

  • Emsley J (2001a) Chromium. In: Nature’s building blocks. An A-Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Emsley J (2001b) Manganese. In: Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, UK, pp 249–253

    Google Scholar 

  • Emsley J (2001c) Chromium. In: Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, UK, pp 495–498

    Google Scholar 

  • Emsley J (2011) Nature’s building blocks, new edition. Oxford University Press, Oxford, UK. ISBN 978-0-19-960563-7

    Google Scholar 

  • Figueroa E (2008) Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Sci Total Environ 389:1–9

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278

    Article  CAS  Google Scholar 

  • Flick DF, Kraybill HF, Dimitroff JM (1971) Toxic effects of cadmium: a review. Environ Res 4:71–85

    Article  CAS  Google Scholar 

  • Foy Charles D (2008) Plant adaptation to acid, aluminum‐toxic soils. Commun Soil Sci Plant Anal 19(1988):7–12

    Google Scholar 

  • Gridley HE, Efisue A, Tolou B, Bakayako T (2006) Breeding for tolerance to iron toxicity at WARDAl. Africa Rice Center (WARDA), Cotonou, Benin, pp 96–111

    Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528

    Article  CAS  Google Scholar 

  • Gupta M, Anwar AM (2014) Arsenate induced differential response in rice genotypes. Ecotoxicol Environ Saf 107:46–54

    Article  CAS  Google Scholar 

  • Hassan MJ, Shao G, Zhang G (2005) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28:1259–1270

    Article  CAS  Google Scholar 

  • He J, Zhu C, Ren Y, Yan Y, Jiang D (2006) Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci 169:711–716

    Article  CAS  Google Scholar 

  • Holleman AF, Wiberg E (1985) Lehrbuch der anorganischenchemie, vol 868. De Gruyter, Berlin

    Book  Google Scholar 

  • Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H (2016) Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 50(8):4178–4185

    Article  CAS  Google Scholar 

  • Hseu Z, Su S, Lai H, Guo H, Chen T, Chen Z (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56:31–52

    Article  CAS  Google Scholar 

  • Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61

    Article  CAS  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminium tolerance in rice. Plant Cell 21:655–667

    Article  CAS  Google Scholar 

  • Huang XY, Deng F, Yamaji N, Pinson SRM, Fujii-Kashino M, Danku J, Douglas A, Guerinot ML, Salt DE, Ma JF (2016) A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun 7:12138

    Article  CAS  Google Scholar 

  • IRRI (2009). https://www.irri.org

  • Ishikawa S, Yasuhiro IY, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa KN, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109(47):19166–19171

    Article  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  CAS  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  CAS  Google Scholar 

  • Itoh J, Hibara K, Sato Y, Nagato Y (2008) Developmental role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol 147:1960–1975

    Article  CAS  Google Scholar 

  • Jain A, Connolly EL (2013) Mitochondrial iron transport and homeostasis in plants. Front Plant Sci 4:348

    Article  Google Scholar 

  • Jia Y, Huang H, Chen Z, Zhu YG (2014) Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ Sci Technol 48(2):1001–1007

    Article  CAS  Google Scholar 

  • Khan SI, Ahmed AK, Yunus M, Rahman M, Hore SK, Vahter M, Wahed MA (2010) Arsenic and cadmium in food-chain in Bangladesh--an exploratory study. J Health Popul Nutr 28(6):578–584

    Google Scholar 

  • Kim SA, Guerinot M (2007) Lou mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

    Google Scholar 

  • Kotas J, Stasicka Z (2000) Commentary: chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(263):283

    Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants. Plant Signal Behav 8(10):e25761

    Article  CAS  Google Scholar 

  • Kumar A, Prasad MNV, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89:1056–1065

    Article  CAS  Google Scholar 

  • Kumar S et al (2013a) Differential expression of rice Lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep 31:569–580

    Article  CAS  Google Scholar 

  • Kumar S et al (2013b) Expression of a rice Lambda class of Glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 249:228–237

    Article  CAS  Google Scholar 

  • Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T (2009) Novel cysteine-rich peptides from Digitariaciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50(1):106–117

    Article  CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    Article  CAS  Google Scholar 

  • Lee S, Kim YY, Lee Y, Lee G (2007) Rice P1B type heavy metal ATPase OsHMA9 is a metal efflux protein. Plant Physiol 145:831–842

    Article  CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee XY, Chung WS (2010) Comparative proteomic analysis of the short term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  CAS  Google Scholar 

  • Li B, Wang X, Qi X, Huang L, Ye Z (2012a) Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron, zinc, nickel and manganese. J Environ Sci 24:1790–1798

    Article  CAS  Google Scholar 

  • Li Y, Lin L, Li Z, Ye X, Xiong K, Aryal B, Xu Z, Paroo Z, Liu Q, He C (2012b) Iron homeostasis regulates the activity of the microRNA pathway through poly (C)-binding protein 2. Cell Metab 15:895–904

    Article  CAS  Google Scholar 

  • Li P, Song A, Li Z, Fan F, Liang Y (2017) Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress. Biologia (Poland) 72:388–397

    CAS  Google Scholar 

  • Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q (2003a) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Res 83:271–281

    Article  Google Scholar 

  • Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC, Zhu QS (2003b) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473

    Article  CAS  Google Scholar 

  • Liu HJ, Zhang JL, Christie P, Zhang FS (2007) Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant Soil 300:105–115

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ 394:361–368

    Article  CAS  Google Scholar 

  • Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T et al (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    Article  CAS  Google Scholar 

  • Mahender A, Swamy BPM, Anandan A, Ali J (2019) Tolerance of iron-deficient and -toxic soil conditions in rice. Plants 8(2):31

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  • Marin A, Masscheleyn P, Patrick W (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139(2):175–183

    Article  CAS  Google Scholar 

  • McDonough WF (2001) The composition of the Earth. quake.mit.edu, archived by the Internet Archive Wayback Machine

  • Mcgrath SP (1982) The uptake and translocation of tri- and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and in soil. New Phytol 92:381–390

    Article  CAS  Google Scholar 

  • Meharg A, Macnair M (1992) Suppression of the high affinity phosphate-uptake system: a mechanism of arsenic tolerance in Holcuslanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Mendoza-Soto AB, Sánchez F, Hernández G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105

    Article  CAS  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191(1):49–56

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, Worblaufen-Bern, Switzerland

    Google Scholar 

  • Mitra A, Chatterjee S, Moogouei R, Gupta D (2017) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:2–22

    Article  CAS  Google Scholar 

  • Mosa K, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White CJ, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21(6):1265–1277

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson D (1978) Lichens and ‘heavy metals’. Int Lichenol Newsl 11(1):1–3

    Google Scholar 

  • Nogawa K, Hagino N, Ishizaki A, Fukushima M (1975) Itai-itai disease. Nihon Eiseigaku Zasshi 30(1):76

    CAS  Google Scholar 

  • Norton GJ, Islam MR, Duan G, Lei M, Zhu Y, Deacon CM et al (2010) Arsenic shoot-grain relationships in field grown rice cultivars. Environ Sci Technol 44:1471–1477

    Article  CAS  Google Scholar 

  • NSC (2009) Lead poisoning. National Safety Council. http://www.nsc.org/news_resources/Resources/Documents/Lead_Poisoning.pdf

  • Onyango DA, Entila F, Dida MM, Ismail AM, Drame KN (2018) Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Funct Plant Biol 46(1):93–105

    Article  CAS  Google Scholar 

  • Panda SK (2003) Heavy metal phytotoxicity induces oxidative stress in Taxithelium sp. Curr Sci 84:631–633

    CAS  Google Scholar 

  • Panda SK, Patra HK (1997) Physiology of chromium toxicity in plants – a review. Plant Physiol Biochem 24(1):10–17

    Google Scholar 

  • Panaullah GM, Alam TM, Hossain B, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317(1–2):31–39

    Google Scholar 

  • Paul S, Roychoudhury A (2018) Transcriptome profiling of abiotic stress-responsive genes during cadmium chloride-mediated stress in two indica rice varieties. J Plant Growth Regul 37:657–667

    Article  CAS  Google Scholar 

  • Paul S, Gayen D, Datta SK, Datta K (2016) Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots. J Exp Bot 67:5811–5824

    Article  CAS  Google Scholar 

  • Paul S, Banerjee A, Roychoudhury A (2018) Role of polyamines in mediating antioxidant defense and epigenetic regulation in plants exposed to heavy metal toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress responses, tolerance and remediation. Springer Nature, Singapore, pp 229–247

    Chapter  Google Scholar 

  • Pineros MA, Magalhaes JV, Alves VMC, Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Camille D, Peter W, Eric P (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice cv. Vialone nano seedlings exposed to cadmium. Environ Exp Bot 62:267–278

    Article  CAS  Google Scholar 

  • Rengel Z (2004) Aluminium cycling in the soil-plant-animal-human continuum. Biometals 17:669–689

    Article  CAS  Google Scholar 

  • Rincón M, Gonzales RA (1992) Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol 99:1021–1028

    Article  Google Scholar 

  • Rodda MS, Li G, Reid RJ (2011) The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post flowering. Plant Soil 347:105–114

    Article  CAS  Google Scholar 

  • Rosseland BO, Eldhuset T, Staurnes M (1990) Environmental effects of aluminium. Environ Geochem Health 12:17–27

    Article  CAS  Google Scholar 

  • Roth J, Ponzoni S, Aschner M (2013) Manganese homeostasis and transport. Met Ions Life Sci 12:169–201

    Article  Google Scholar 

  • Roychoudhury A, Ghosh S (2013) Physiological and biochemical responses of mungbean (Vigna radiata L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride. Unique J Pharmaceut Biol Sci 1:11–21

    Google Scholar 

  • Roychoudhury A, Pradhan S, Chaudhuri B, Das K (2012a) Phytoremediation of toxic metals and the involvement of Brassica species. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Taylor and Francis Group, Boca Raton, pp 219–251

    Chapter  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012b) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847

    Article  CAS  Google Scholar 

  • Ryan PR, Di Tomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 4(4):437–446

    Article  Google Scholar 

  • Sahoo RK, Ansari MW, Tuteja R, Tuteja N (2014) OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice (NY) 7(1):17

    Article  Google Scholar 

  • Saikia T, Baruah KK (2012) Iron toxicity tolerance in rice (Oryza sativa) and its association with anti-oxidative enzyme activity. J Crop Sci 3:90

    Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in food chain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2013

    Article  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65(20):6013–6021

    Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    Article  CAS  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Sakurai K, Takahashi H, Watanabe A, Akagi H (2013) Functional relationship heavy metal P-type ATPases (OsHMA 2 and OsHMA3) of rice (Oryza sativa) using RNAi. Plant Biotechnol 30(5):511–515

    Google Scholar 

  • Schoeters G, Den HE, Zuurbier M, Naginiene R, Hazel P, Stilianakis N, Ronchetti R, Koppe JG (2006) Cadmium and children: exposure and health effects. Acta Paediatr Suppl 95:50–54

    Article  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  Google Scholar 

  • Shakhashiri BZ (2008) Chemical of the week: aluminum. SciFun.org. University of Wisconsin

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Sharma S, Chatterjee S, Datta S, Mitra A, Vairale MG, Veer V, Chaurasia A, Gupta DK (2014) In vitro selection of plants for the removal of toxic metals from contaminated soil: role of genetic variation in phytoremediation. In: Gupta DK, Chattejee S (eds) Heavy metal remediation transport and accumulation in plants. Nova Science Publishers, New York, pp 155–177

    Google Scholar 

  • Shen R, Ma J, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    Article  CAS  Google Scholar 

  • Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62(15):5727–5234

    Article  CAS  Google Scholar 

  • Shinwari K, Urehman S, Khan D, Naeem R, Jamil M (2015) Seed priming with salicylic acid induces tolerance against chromium (vi) toxicity in rice (oryza sativa L.). Pak J Bot 47(SI):161–170

    CAS  Google Scholar 

  • Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW (2001) Differential aluminum tolerance in soybean: an evaluation of the role of organic acids. Physiol Plant 112:200–210

    Article  CAS  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H et al (2000) Aluminum-induced 1-->3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124(3):991–1006

    Article  CAS  Google Scholar 

  • Slaski J (1994) Differences in the metabolic responses of root tips of wheat and rye to aluminium stress. Plant Soil 167:165–171

    Article  CAS  Google Scholar 

  • Soler JS, Rovira JS (1996) Cadmium in inorganic fertilizers. In: Rodriguez-Barrueco C (ed) Fertilizers and environment. Developments in plant and soil science. Springer, Dordrecht, p 66

    Google Scholar 

  • Song WY, Park J, Mendoza CD, Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea P, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107(49):21187–21192

    Article  CAS  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065

    Article  CAS  Google Scholar 

  • Srivastava D, Verma G, Chauhan A, Pande V, Chakrabarty D (2018) Oryza sativa tau class glutathione S-transferases (OsGSTU30 ) overexpression in Arabidopsis thaliana modulates regulatory network leading to heavy metal and drought stress tolerance. Metallomics 11(2):375–389

    Article  Google Scholar 

  • Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity in the field. Ann Appl Biol 154:269–277

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59(12):3465–3474

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38(4):1038–1044

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011) Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6(11):1813–1816

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957

    Article  CAS  Google Scholar 

  • Trinh N, Huang T, Chi W, Fu S, Chen C, Huang H (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plantarum 150:205–224

    Article  CAS  Google Scholar 

  • Tsunemitsu Y, Genga M, Okada T, Yamaji N, Feng MJ, Miyazaki A, Kato S, Iwasaki K, Ueno D (2018) A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in rice. Planta 248:10

    Article  CAS  Google Scholar 

  • Tsutsui T, Yamaji N, Huang CF, Motoyama R, Nagamura Y, Ma JF (2012) Comparative genome-wide transcriptional analysis of Al-responsive genes reveals novel Al tolerance mechanisms in rice. PLoS One 7(10):e48197

    Article  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107(38):16500–16505

    Article  CAS  Google Scholar 

  • Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nat Plants 1:15170

    Article  CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(5):1–8

    Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci U S A 108(52):20959–20964

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Viana VE, Marini N, Finatto T, Ezquer I, Busanello C, Dos Santos RS, Pegoraro C, Colombo L, de Oliveira AC (2017) Iron excess in rice: from phenotypic changes to functional genomics of WRKY transcription factors. Genet Mol Res 16(3):gmr16039694

    Article  CAS  Google Scholar 

  • Vincent JB (2011) Chromium: biological relevance. In: Scott RA (ed) Encyclopedia of inorganic and bioinorganic chemistry. University of Georgia, Athens, GA

    Google Scholar 

  • von Burg R, Liu D (1993) Chromium and hexavalent chromium. J Appl Toxicol 13:225–230

    Article  Google Scholar 

  • Wan JL, Zhai HQ, Wan JM (2005) Mapping of QTLs for ferrous iron toxicity tolerance in rice (Oryza sativa L.). Yi Chuan Xue Bao 32:1156–1166

    CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  Google Scholar 

  • Wang FJ, Zeng B, Sun ZX, Zhu C (2009) Relationship between proline and Hg2C-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56:723–731

    Article  CAS  Google Scholar 

  • Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 27:389–401

    Article  CAS  Google Scholar 

  • Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63:5903–5918

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859

    Google Scholar 

  • WHO (1992) Cadmium. World Health Organization Environmental Health Criteria, No. 134. WHO, Geneva, Switzerland

    Google Scholar 

  • Wu FB, Dong J, Jia GX, Zheng SJ, Zhang GP (2006) Genotypic difference in the responses of seedling growth and Cd toxicity in rice Oryza sativa L. Agric Sci China 5:68–76

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, Mcgrath SP, Wu P, Zhao F (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157(1):498–508

    Article  CAS  Google Scholar 

  • Wu L-B, Shhadi MY, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7(1):8

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:Article ID 402647

    Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci U S A 107(43):18381–18385

    Article  CAS  Google Scholar 

  • Xia J, Yamaji N, Ma JF (2011) Further characterization of an aluminum influx transporter in rice. Plant Signal Behav 6(1):160–163

    Article  CAS  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21(10):3339–3349

    Google Scholar 

  • Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013) A node-based switch for preferential distribution of manganese in rice. Nat Commun 4:2442

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128(1):63–72

    Article  CAS  Google Scholar 

  • Yan Y, Zhou YQ, Liang CH (2015) Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils. PLoS One 10(4):e0124022

    Article  CAS  Google Scholar 

  • Yokosho K, Yamaji N, Kashino-Fujii M, Feng MJ (2016) Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol 172(4):2327–2336

    Article  CAS  Google Scholar 

  • Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and nonenzymatic antioxidative defences of rice Oryza sativa L. Int J Phytoremediation 15:513–521

    Article  CAS  Google Scholar 

  • Yu LL, Zhu JY, Huang QQ, Su DC, Jiang RF, Li HF (2014) Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicol Environ Safe 108:287–293

    Article  CAS  Google Scholar 

  • Zayed A, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(139):56

    Google Scholar 

  • Zeng FR, Zhao FS, Qiu BY, Ouyang YN, Wu FB, Zhang GP (2011) Alleviation of chromium toxicity by silicon addition in rice plants. J Integr Agric 10(8):1188–1196

    CAS  Google Scholar 

  • Zhang J, He Z, Tian H, Zhu G, Peng X (2007) Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities. J Exp Bot 58(8):2269–2278

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010a) Potential of four grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101(6):2063–2066

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010b) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  Google Scholar 

  • Zhang J, Chen K, Pang Y, Naveed SA, Zhao X, Wang X, Wang Y, Dingkuhn M, Pasuquin J, Li Z (2017a) QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. BMC Genomics 18:828

    Article  CAS  Google Scholar 

  • Zhang Y, Wu Y, Xu G, Song J, Wu T, Mei X, Liu P (2017b) Effects of iron toxicity on the morphological and biological characteristics of rice root border cells. J Plant Nutr 40:332–343

    Article  CAS  Google Scholar 

  • Zhao FJ, Mcgrath S, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, S., Dey, S., Kundu, R. (2020). Genomics and Genetic Engineering to Develop Metal/Metalloid Stress-Tolerant Rice. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_13

Download citation

Publish with us

Policies and ethics