Skip to main content

Abstract

To obtain nutrients from their hosts, insects feeding on plants use a variety of approaches. Instead of being submissive victims during such interactions, plants respond to these herbivores by producing a variety of defensins in the form of toxins, post-defence peptides, etc. so that the physiological or metabolic processes in the insect could be targeted (direct defence mechanisms) or emit volatile organic compounds to attract natural enemies of these herbivores (indirect defence). Direct and indirect defence mechanisms in plants may act together in concurrence or independent of each other. Both types of defence mechanisms could be either constitutive (always present in the plant) or induced (produced in response to damage or stress caused by herbivores). Evolution of induced chemical defences is linked with formation of chemical substances which are not involved in either photosynthetic or metabolic activities or growth development and reproduction of plants, but these organic compounds also known as secondary metabolites or allelochemicals are only required for defence against herbivores. These metabolites/toxins interfere with insect’s metabolism by blocking specific biochemical reactions. These natural defence mechanisms in plants (specially the induced one) could be exploited and used as an important tool in the field of pest management where one can restrict or cut down the use of large amount of insecticides or pesticides in crop fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants overexpressing two families of plant proteinase inhibitors. Plant Mol Biol 57(2):189–202

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild Radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723. https://doi.org/10.1890/0012-9658(1999)080[1713:IRTHIW]2.0.CO;2

    Article  Google Scholar 

  • Agrawal AA, Fishbein M, Jetter R, Saltines JP, Goldstein JB, Freitag AE, et al (2009) Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behaviour. New Phytol 183:848–867; PMID: 19522840; https://doi.org/10.1111/j.1469-8137.2009.02897.x

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH (1997) An elicitor of plant volatiles from beet armyworm oral secretions. Science 276:945–949

    CAS  Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science (New York, N.Y.) 329:1075–1078

    Article  CAS  Google Scholar 

  • Aljbory Z, Chen M-S (2016) Indirect plant defense against insect herbivores: a review. Insect Sci 25:2–23. https://doi.org/10.1111/1744-7917.12436

    Article  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Arimura GI, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    Article  CAS  PubMed  Google Scholar 

  • Atiwetin P, Harada S, Kamei K (2006) Serine protease inhibitor from Wax Gourd (Benincasa hispida [Thumb] seeds). Biosci Biotech Biochem 70(3):743–745

    Article  CAS  Google Scholar 

  • Barbehenn RV, Peter Constabel C (2011) Tannins in plant herbivore interactions. Phytochemistry 72:1551–1565; PMID: 21354580; https://doi.org/10.1016/j.phytochem.2011.01.040

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. https://doi.org/10.1007/s11103-008-9435-0

    Article  CAS  PubMed  Google Scholar 

  • Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G (2015) Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A 112:5533–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127(4):617–633

    Article  CAS  PubMed  Google Scholar 

  • Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS (2012) Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS One 7(10):e46343. https://doi.org/10.1371/journal.pone.0046343. Epub 2012 Oct 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38; PMID: 19050959; https://doi.org/10.1007/s10886-008-9571-7

  • Bodnaryk RP (1991) Developmental profile of sinalbin in mustard seedlings, Sinapis alba L., and its relationship to insect resistance. J Chem Ecol 17:1543–1556

    Article  CAS  PubMed  Google Scholar 

  • Bolter CJ, Dicke M, van Loon JJ, Visser JH, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore – damaged plants during herbivory and after its termination. J Chem Ecol 23:1003–1023

    Article  CAS  Google Scholar 

  • Bonaventure G, van Doorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–299

    Article  CAS  PubMed  Google Scholar 

  • Brattsten LB, Samuelian JH, Long KY, Kincaid SA, Evans CK (1983) Cyanide as a feeding stimulant for the southern armyworm, Spodoptera eridania. Ecol Entomol 8:125–132

    Article  Google Scholar 

  • Bruessow F, Gouhier-Darimont C, Buchala A, Metraux J-P, Reymond P (2010) Insect eggs suppress plant defence against chewing herbivores. Plant J 62:876–885

    Article  CAS  PubMed  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2587; PMID:19451186; https://doi.org/10.1093/jxb/erp101

  • Bruinsma M, van Broekhoven S, Poelman EH, Posthumus MA, Müller MJ, van Loon JJA, Dicke M (2010) Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia 162(2):393–404

    Article  PubMed  Google Scholar 

  • Chamarthi SK, Sharma HC, Vijay PM, Narasu LM (2011) Leaf surface chemistry of sorghum seedlings influencing expression of resistance to sorghum shoot fly, Atherigona soccata. J Plant Biochem Biotechnol 20:211–216. https://doi.org/10.1007/s13562-011-0048-3

    Article  CAS  Google Scholar 

  • Charity JAA, Merilyn AB, Dennis JW, Malcom Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol Breed 5:357–365

    Article  CAS  Google Scholar 

  • Chen MS (2018) Inducible direct plant defense against insect herbivores: a review article. Insect Sci 25:2–23. https://doi.org/10.1111/j.1744-7917.2008.00190.x

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CAM, Vaughn KA et al (2013) The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonates and herbivore-induced plant volatile production for defense against insect attack. Plant J 74:59–73

    Article  CAS  PubMed  Google Scholar 

  • Clausen TP, Reichardt PB, Bryant JP, Provenza F (1992) Condensed tannins in plant defense: a perspective on classical theories. In: Hemingway RW, Laks PE (eds) Plant polyphenols. Basic life sciences, vol 59. Springer, Boston

    Google Scholar 

  • Cui J, Luo J, Werf WVD, Ma Y, Xia J (2011) Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. J Econ Entomol 104:673–684

    Article  CAS  PubMed  Google Scholar 

  • Dalin P, Björkman C (2003) Adult beetle grazing induces willow trichome defence against subsequent larval feeding. Oecologia 134:112–118; PMID: 12647188; https://doi.org/10.1007/s00442-002-1093-3

  • Dangl JL, McDowell JM (2006) Two modes of pathogen recognition by plants. Proc Natl Acad Sci U S A 103:8575–8576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RH, Nahrstedt A (1985) Cyanogenesis in insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry pharmacology. Pergamon Press, Oxford, pp 635–654

    Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • De Leo F, Bonadé-Bottino M, Ceci LR, Gallerani R, Jouanin L (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 31:593–602; PMID:11267898; https://doi.org/10.1016/S0965-1748(00)00164-8

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Netherlands J Zool 38:149–165

    Google Scholar 

  • Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy SR, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci U S A 97:6218–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:11–12

    Article  Google Scholar 

  • Duffey SS, Stout MJ (1996) A nutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 137. https://doi.org/10.1002/(SICI)1520-6327(1996)32:1<3::AIDARCH2>3.0.CO;2-1

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci U S A 107:15011–15015; PMID: 20696895; https://doi.org/10.1073/pnas.1009241107

  • Dustan WR, Henry TA (1902) Cyanogenesis in plants, II. The great millet, Sorghwtin vulgare. Chem News 85:399–410

    Google Scholar 

  • Dutartre L, JHilliou F, Feyereisen R (2012) Phylogenomics of the benzoxazinoid biosynthetic pathway of poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 12:64. Int. J. Mol. Sci. 2013, 14 10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman GM, Cunningham BA, Reeke GN, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci U S A 69:2580–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J (2006) Secondary metabolites and plant defense. In: Taiz L, Zeiger E (eds) Plant physiology, vol 4. Sinauer Associates, Sunderland, pp 315–344

    Google Scholar 

  • Erb M (2009) Modification of plant resistance and metabolism by above- and belowground herbivores. Ph.D. Dissertation, Université de Neuchâtel, Neuchâtel, Swizerland

    Google Scholar 

  • Erb M, Glauser G, Robert CAM (2012) Induced immunity against belowground insect herbivores—activation of defenses in the absence of a jasmonate burst. J Chem Ecol 38:629–640

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOCemissions in tomato. Phytochemistry 61:545–554

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, Broekgaarden C, Bukovinszkine’Kiss G, van Loon JJ, Mumm R, Huigens ME, Dicke M, Hilker M (2008) Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proc Natl Acad Sci U S A 105:10033–10038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatouros NE, Pashalidou FG, Aponte Cordero WV, van Loon JJA, Mumm R, Dicke M, Hilker M, Huigens ME (2009) Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J Chem Ecol 35:1373–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattorusso E, Taglialatela-Scafati O (2007) Modern alkaloids: structure, isolation, synthesis and biology. Wiley, Hoboken

    Book  Google Scholar 

  • Feeny PP (1968) Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. J Insect Physiol 14:805–817. https://doi.org/10.1016/0022-1910(68)90191-1

    Article  CAS  Google Scholar 

  • Felton GW (2008) Caterpillar secretions and induced plant responses. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, New York, pp 369–387

    Chapter  Google Scholar 

  • Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect interface. Curr Opin Plant Biol 11:457–463

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Bi JL, Summers CB, Mueller AJ, Duffey SS (1994) Potential role of lipoxygenases in defense against insect herbivory. J Chem Ecol 20:651–666

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD (2013) Oligogalacturonides: plant damage associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161

    Article  CAS  PubMed  Google Scholar 

  • Forslund K, Morant M, Jørgensen B, Olsen CE, Asamizu E, Sato S, Tabata S, Bak S (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiol 135:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci U S A 97:14801–14806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297. https://doi.org/10.3390/ijms140510242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Lara S, Bergvinson DJ, Burt AJ, Ramputh AI, Díaz-Pontones DM, Arnason JT (2004) The role of pericarp cell wall components in maize weevil resistance. Crop Sci 44:1560–1567. https://doi.org/10.2135/cropsci2004.1546

    Article  Google Scholar 

  • Gardner H (1980) Lipid Enzymes: lipases, lipoxygenases, and “hydroperoxidases”. https://doi.org/10.1007/978-1-4757-9351-2_25

  • Gatehouse AMR, Gatehouse JA (1998) Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pestic Sci 52(2):165–175

    Article  CAS  Google Scholar 

  • Gill RS, Gupta K, Taggar GK, Taggar MS (2010) Role of oxidative enzymes in plant defenses against herbivory. Acta Phytopathol Entomol Hung 45:277–290. https://doi.org/10.1556/APhyt.45.2010.2.4

    Article  CAS  Google Scholar 

  • Giovanini MP, Saltzmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol 8:69–82; PMID: 20507479; https://doi.org/10.1111/j.1364-3703.2006.00371.x

  • Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TCJ, Erb M (2011) Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J 68:901–911

    Article  CAS  PubMed  Google Scholar 

  • Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV (1992) Condensed tannin levels and resistance in groundnuts (Arachis hypogaea (L.)) against Aphis craccivora (Koch). Phytochemistry 31:3795–3799. https://doi.org/10.1016/S0031-9422(00)97530-7

    Article  CAS  Google Scholar 

  • Hagenbucher S, Olson DM, Ruberson JR, Wackers FL, Romeis J (2013) Resistance mechanisms against arthropod herbivores in cotton and their interactions with natural enemies. Crit Rev Plant Sci 32:458–482

    Article  CAS  Google Scholar 

  • Handley R, Ekbom B, Agren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292. https://doi.org/10.1111/j.0307-6946.2005.00699.x

    Article  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in antiherbivore defense. Perspect Plant Ecol Evol Syst 8:157–178. https://doi.org/10.1016/j.ppees.2007.01.001

    Article  Google Scholar 

  • Heil M (2004) Induction of two indirect defences benefits lima bean in nature. J Ecol 92:527–536

    Article  Google Scholar 

  • Herbert L, Fraenkel GS, Liener IE (1954) Growth inhibitors. Effect of soybean inhibitors on growth of Tribolium confusum. J Agric Food Chem 2(8):410–414

    Article  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytol 199:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 49:715–720

    Article  CAS  PubMed  Google Scholar 

  • Irmisch S, Clavijo McCormick A, Günther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Köllner TG (2014) Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J 80:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31(3):481–495

    Article  CAS  PubMed  Google Scholar 

  • John M, Röhrig H, Schmidt J, Walden R, Schell J (1997) Cell signalling by oligosaccharides. Trends Plant Sci 2:111–115

    Article  Google Scholar 

  • Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138; PMID: 15291486; https://doi.org/10.1021/jf0308049

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Koptur S (1992) Extrafloral nectary-mediated interactions between insects and plants. In: Bernays E (ed) Insect–plant interactions, vol 4. CRC Press, Boca Raton, FL, pp 81–129

    Google Scholar 

  • Lane GA, Sutherland ORW, Skipp RA (1987) Isoflavonoids as insect feeding deterrents and antifungal components from root of Lupinus angustifolius. J Chem Ecol 13:771–783. https://doi.org/10.1007/BF01020159

    Article  CAS  PubMed  Google Scholar 

  • Herbert Lipke, G. S. Fraenkel, Irvin E. Liener, (1954) . Journal of Agricultural and Food Chemistry 2 (8):410–414

    Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defence. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis J, Luthe DS, Felton GW (2014) Salivary signals of European corn borer induce indirect defenses in tomato. Plant Signal Behav 8(11):e27318

    Article  CAS  Google Scholar 

  • Luczynski A, Isman MB, Rawirth DA (1990) Strawberry foliar phenolics and their relationship to development of the two-spotted spider mite. J Econ Entomol 83:557–563

    Article  CAS  Google Scholar 

  • Macedo MLR, Oliveira CFR, Costa PM, Castelhano EC, Silva-Filho MC (2015) Adaptive mechanisms of insect pests against plant protease inhibitors and future prospects related to crop protection: a review. Protein Pept Lett 22:149–163

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76(4):612–631

    Article  CAS  Google Scholar 

  • Mahanil S, Attajarusit J, Stout MJ, Thipyapong P (2008) Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci 174:456–466. Int. J. Mol. Sci. 2013, 14 10291

    Article  CAS  Google Scholar 

  • Malagón J, Garrido A (1990) Relación entre el contenido de glicósidos cianogénicos y la resistencia a Capnodis tenebrionis l. En frutales de hueso. Bol Sanid Veg Plagas 16:499–503

    Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313; PMID: 17982444; https://doi.org/10.1038/nbt1352

  • Maxwell FG, Lafever HN, Jenkins JN (1965) Blister beetles on glandless cotton. J Econ Entomol 58:792–798

    Article  Google Scholar 

  • McMahon JM, White WLB, Sayre RT (1995) Cyanogenesis in cassava (Manihot esculenta crantz). J Exp Bot 46:731–741

    Article  CAS  Google Scholar 

  • Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidins synthesis in poplar. Plant Physiol 150:924–941; PMID: 19395405; https://doi.org/10.1104/pp.109.139071

  • Møller BL, Seigler DS (1991) Biosynthesis of cyanogenic glycosides, cyanolipids and related compounds. In: Singh BK (ed) Plant amino acids, biochemistry and biotechnology. Marcel Dekker, New York, pp 563–609

    Google Scholar 

  • Nuessly GS, Scully BT, Hentz MG, Beiriger R, Snook ME, Widstrom NW (2007) Resistance to Spodoptera frugiperda (lepidoptera: Noctuidae) and Euxesta stigmatias (diptera: Ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems. J Econ Entomol 100:1887–1895

    Article  CAS  PubMed  Google Scholar 

  • O’Connell DM, Monks A, Dickinson KJ, Lee WG (2015) Is domatia production in Coprosma rotundifolia (Rubiaceae) induced by mites or foliar pathogens? N Z J Ecol 39:214–220

    Google Scholar 

  • O’Doherty I, Yim JJ, Schmelz EA, Schroeder FC (2011) Synthesis of caeliferins, elicitors of plant immune responses: accessing lipophilic natural products via cross metathesis. Org Lett 13:5900–5903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver JE, Doss RP, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins–mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae. Tetrahedron 56:7633–7641

    Article  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210

    Article  CAS  Google Scholar 

  • Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398

    Article  CAS  PubMed  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, He DP, Li S, Yang ZD (2016) A facile and efficient synthesis of caeliferin a 16:0. Chem Nat Compd 52:199–201

    Article  CAS  Google Scholar 

  • Petterson DS, Harris DJ, Allen DG (1991) Alkaloids. In: D’Mello JPF, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. The Royal Society of Chemistry, Cambridge, pp 148–179

    Chapter  Google Scholar 

  • Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464; PMID: 15231270; https://doi.org/10.1016/j.pbi.2004.05.006

  • Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE (2005) Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol Plant Biol 6:411–423

    CAS  Google Scholar 

  • Renwick JAA, Zhang W, Haribal M, Attygalle AB, Lopez KD (2001) Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 27:157583; PMID:11521397; https://doi.org/10.1023/A:1010402107427

  • Rosenthal GA (1991) Nonprotein amino acids as protective allelochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 1. Academic Press, San Diego, pp 1–34

    Google Scholar 

  • Ruuhola T, Tikkanen O, Tahvanainen O (2001) Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent salix species. J Chem Ecol 27:1595–1615

    Article  CAS  PubMed  Google Scholar 

  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmuller R, Baldwin IT (2011a) Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol 156:1520–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schäfer M, Fischer C, Baldwin IT, Meldau S (2011b) Grasshopper oral secretions increase salicylic acid and abscisic acid levels in wounded leaves of Arabidopsis thaliana. Plant Signal Behav 6:1256–1258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, et al (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899; PMID:16720701; https://doi.org/10.1073/pnas.0602328103

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2007a) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899

    Article  CAS  Google Scholar 

  • Schmelz EA, LeClere S, Carroll MJ, Alborn HT, Teal PE (2007b) Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 144:793–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH III, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A 106:653–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Sharma HC, Agarwal RA (1983) Role of some chemical components and leaf hairs in varietal resistance in cotton to jassid, Amrasca biguttula biguttula Ishida. J Entomol Res 7:145–149

    CAS  Google Scholar 

  • Sharma P, Narayanan A, El-Shall HE, Moudjil BM (2015) Engineered particulate systems for controlled release of pesticides and repellants. US Patent US20150056259 A1

    Google Scholar 

  • Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27:965–977; PMID: 11471948; https://doi.org/10.1023/A:1010339104206

  • Steppuhn A, Baldwin IT (2007) Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol Lett 10:499–511; PMID: 17498149; https://doi.org/10.1111/j.1461-0248.2007.01045.x

  • Telang MA, Giri AP, Pyati PS, Gupta VS, Tegeder M, Franceschi VR (2009) Winged bean chymotrypsin inhibitors retard growth of Helicoverpa armigera. Gene 431:80–85. https://doi.org/10.1016/j.gene.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  • Tempfli B, Pénzes B, Fail J, Szabó Á (2015) The occurrence of tydeoid mites (Acari: Tydeoidea) in Hungarian vineyards. Syst Appl Acarol 20:937–954

    Google Scholar 

  • Tiku RA (2018) Antimicrobial compounds and their role in plant defense. In: Molecular aspects of plant-pathogen interaction. University of Geneva, Geneva, pp 283–307

    Chapter  Google Scholar 

  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TC (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157. https://doi.org/10.1007/s10311-006-0068-8

    Article  CAS  Google Scholar 

  • Truitt CL, Wei H-X, Pare PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turlings TCJ, Benrey B (2016) Effects of plant metabolites on the behavior and development of parasitic wasps. Écoscience 5(3):321–333

    Article  Google Scholar 

  • Vandenborre G, Miersch O, Hause B, Smagghe G, Wasternack C, Van Damme EJM (2009) Spodoptera littoralis induced lectin expression in tobacco. Plant Cell Physiol 50:1142–1155; PMID:19416954; https://doi.org/10.1093/pcp/pcp065

  • Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550; PMID: 21429537; https://doi.org/10.1016/j.phytochem.2011.02.024

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone mediated regulation of stress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT (2007) Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J 51:293–307; PMID: 17559506; https://doi.org/10.1111/j.1365-313X.2007.03142.x

  • Vos IV, Moritz L, Pieterse CMJ, van Wees SCM (2015) Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front Plant Sci 6:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320. https://doi.org/10.4161/psb.21663

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JN, van Loon JJA, Gols R, Menzel TR, Li N, Kang L, Dicke M (2014) Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore hostselection behaviour. J Exp Bot 65:3289–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welinder KG (1986) The plant peroxidase superfamily. In: Lobarzewski J, Greppin H, Penel C, Gaspar TH (eds) Biochemical, molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, pp 3–13

    Google Scholar 

  • Woldemariam MG, Onkokesung N, Baldwin IT, Galis I (2012) Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhou W, Pottinger S, Baldwin IT (2015) Herbivore associated elicitor-induced defences are highly specific among closely related nicotiana species. BMC Plant Biol 15:2. https://doi.org/10.1186/s12870-014-0406-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Zhang Y, Wu K, Gao XW, Guo YY (2008) Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ Entomol 37:1410–1415

    Article  CAS  PubMed  Google Scholar 

  • Zhang SZ, Hau BZ, Zhang F (2008) Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interact 2:209–213. https://doi.org/10.1007/s11829-008-9044-5

    Article  Google Scholar 

  • Zhang P, Broekgaarden C, Zheng S, Snoeren TAL, van Loon JJA, Gols R, Dicke M (2013) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197:1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae– induced wheat defense responses. Crop Prot 28:435–442. https://doi.org/10.1016/j.cropro.2009.01.005

    Article  CAS  Google Scholar 

  • Zhuang X, Fiesselmann A, Zhao N, Chen H, Frey M, Chen F (2012) Biosynthesis and emission of insect Herbivory-induced volatile indole in rice. Phytochemistry 73:15–22

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:736–769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiku, A.R. (2021). Direct and Indirect Defence Against Insects. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_8

Download citation

Publish with us

Policies and ethics