Skip to main content

Abstract

At present, the erratic environmental conditions along with ever-increasing human population have created a problem for the agricultural researchers to fulfill the world food demand, with present rate of increase in crop production. Increase in world mean temperature along with shortage of freshwater has further worsened this situation. Due to increasing greenhouse effect in last few decades, it has increased the average world temperature more than 1.5 oC that increased the evapotranspiration and created a problem of aridity in some areas of the world. It is estimated that till 2050, there is a need to double the world food production with a rate of 2–5% per year but present rate of only 0.9%. It is only possible by increasing the crop production area or by crop production per capita. The former one is not possible in present environmental conditions due to limited sources of freshwater. However, it is possible to achieve the latter one through different ways, when there is a limited supply of water. It is possible through the selection from the available germplasm that can perform better with better production under the changing environmental conditions, and it seems the important and foremost way to deal with the problems of world food demand. Crop breeding for the selection of varieties with better production under changing and stressful environmental conditions is gaining interest. In this regard, the selection of crop varieties against different abiotic stresses for better production seems to be the most important one. Normally, the breeding for the selection of stress-tolerant crop varieties is based on different agronomic traits (traits of interest) such as plant biomass production, yield attributes, and different stress tolerance indices that are considered necessary ones. The stress tolerance mechanism in plants is a phenomenon of different cellular physio-biochemical attributes. However, it is a complex mechanism because the stress tolerance in crops is multigenic and complex mechanism and is purely under the control of genetics. In this regard, present interest and focus of researchers in the study of quantitative trait loci (QTLs) has played an important role for the selection and development of stress-tolerant crop varieties in a short time. Though the fruitful success regarding the QTL-based selection has been achieved, but due to the complexity in multigenic nature of stress tolerance, the behavior of the crop varieties changes under the changing environmental conditions. The present chapter is a comprehensive update regarding selection of stress-tolerant crop varieties for better production under the changing environmental conditions. So, in the future in view of changing environmental scenario, it is necessary to find out or develop the crop varieties that can perform better with better production under such conditions that will be fruitful to fulfill the world food demand for ever-increasing world population at present and in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger WN, Agrawala S, Mirza M, Conde C, Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi, K (2007). Assessment of adaptation practices, options, constraints and capacity. In: Parry ML, Canziani OF, Palutikof JP, vander Linden PJ, Hanson CE (eds.) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 717–743

    Google Scholar 

  • Ahmadzadeh N, Mostafavil K, Zabet M (2015) Effect of salinity stress on yield and yield components in rapeseed cultivars. Int Res J Appl Basic Sci 9:1592–1595

    Google Scholar 

  • Ahmed I, Ali A, Mahmood IA, Salim M, Hussain N, Jamil M (2005) Growth and ionic relations of various sunflower cultivars under saline environment. Helia 28(42):147–158

    Article  Google Scholar 

  • Akhtar N (2006) Callogenesis and organogenesis response of wheat cultivars under sodium chloride salt stress. Pakistan J Biol Sci 9:2092–2096

    Article  CAS  Google Scholar 

  • Akhtar T, Zia-ur-Rehman M, Naeem A, Nawaz R, Ali S, Murtaza G, Maqsood MA, Azhar M, Khalid H, Rizwan M (2017) Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environ Sci Pollut Res 24:5521–5529

    Article  CAS  Google Scholar 

  • Akram M (2011) Growth and yield components of wheat under water stress of different growth stages. Bangladesh J Agric Res 36(3):455–468

    Article  Google Scholar 

  • Aksouh NM, Jacobs BC, Stoddard FL, Mailer RJ (2001) Response of canola to different heat stresses. Australian J Agric Res 52:817–824

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5)

    Google Scholar 

  • Aliakbari M, Razi H, Kazemeini SA (2014) Evaluation of drought tolerance in rapeseed (Brassica napus L.) cultivars using drought tolerance indices. Int J Adv Biol. Biomed Res 2:696–705

    Google Scholar 

  • Alsajri F, Singh B, Wijewardana C, Irby J, Gao W, Reddy K (2019) Evaluating soybean cultivars for low-and high-temperature tolerance during the seedling growth stage. Agronomy 9:1–20

    Article  Google Scholar 

  • Alybayeva R, Kruzhaeva V, Alenova A, Salmenova I, Asylbekova A, Sadyrbaeva A (2016) The genetic potential of wheat resistance to heavy metals. Bioeng Biosci 4:34–41

    CAS  Google Scholar 

  • Angessa TT, Zhang XQ, Zhou G, Broughton S, Zhang W, Li C (2017) Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population. PloS One 12:1–16

    Article  CAS  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem FM, Ali I, Wang LC (2017a) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:1–8

    Article  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Ashraf U, Khan I, Wang L (2017b) Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut 228:1–12

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Baloğlu MC, Kavas M, Aydin G, Öktem HA, Yücel AM (2012) Antioxidative and physiological responses of two sunflower (Helianthus annuus) cultivars under PEG-mediated drought stress. Turk J Bot 36:707–714

    Google Scholar 

  • Bartha C, Fodorpataki L, Martinez-Ballesta MC, Popescu O, Carvajal M (2015) Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. J Appl Bot Food Qual 88:42–48

    CAS  Google Scholar 

  • Bavani MRZ, Petvast G, Ghasemnezhad M, Forghani A (2015) Assessment of genotypic variation in salt tolerance of pepper (Capsicum annuum L.) Cultivar using gas exchange characteristic, growth parameters and chlorophyll content. South Western J Hort. Biol Environ 6:71–90

    Google Scholar 

  • Bhusal N, Sarial AK, Sharma P, Sareen S (2017) Mapping QTLs for grain yield components in wheat under heat stress. PloS One 12:1–14

    Article  CAS  Google Scholar 

  • Bizimana JB, Luzi-Kihupi A, Murori RW, Singh RK (2017) Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi mapping population. J Genetics 96:571–582

    Article  CAS  Google Scholar 

  • Bo K, Ma Z, Chen J, Weng Y (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet 128:25–39

    Article  CAS  PubMed  Google Scholar 

  • Borowski E, Michalek S (2014) The effect of chilling temperature on germination and early growth of domestic and Canadian soybean (Glycine max (L.) Merr.) cultivars. Acta Scientiarum Polonorum Hortorum Cultus 13:31–43

    Google Scholar 

  • Brdar-Jokanović M, Girek Z, Pavlović S, Ugrinović M, Zdravković J (2014) Shoot and root dry weight in drought exposed tomato populations. Genetika 46:495–504

    Article  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  CAS  PubMed  Google Scholar 

  • Bybordi A, Tabatabaei SJ, Ahmadev A (2010) The influence of salinity stress on antioxidant activity in canola cultivars (Brassica napus L.). J Food Agric Environ 8:122–127

    CAS  Google Scholar 

  • Camejo D, Rodríguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcón JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Pradhan B (2012) Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian J Plant Physiol 24:117–130

    Article  CAS  Google Scholar 

  • Chauhan A, Rajput N, Kumar D, Kumar A, Chaudhry AK (2016) Effect of different salt concentration on seed germination and seedling growth of different varieties of oat (Avena sativa L.). Int J Inf. Res Rev 3:2627–2632

    Google Scholar 

  • Chen J, Xu W, Velten J, Xin Z, Stout J (2012) Characterization of maize inbred lines for drought and heat tolerance. J Soil Water Conserv 67:354–364

    Article  Google Scholar 

  • Chunthaburee S, Dongsansuk A, Sanitchon J, Pattanagul W, Theerakulpisut P (2016) Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 23(4):467–477

    Article  CAS  PubMed  Google Scholar 

  • Cline WR (2007) Global Warming and Agriculture: Impact Estimates by Country. Washington, DC, USA, Peterson Institute

    Google Scholar 

  • Collado MB, Aulicino MB, Arturi MJ, Molina MDC (2016) Selection of maize genotypes with tolerance to osmotic stress associated with salinity. Agri Sci 7(02):82–92

    CAS  Google Scholar 

  • Cruz RPD, Milach SCK (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agri 61(1):1–8

    Article  Google Scholar 

  • Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P, Zhang H, Chen H, Zhao L (2015) QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica 203(2):273–283

    Article  CAS  Google Scholar 

  • Curtis, T., & Halford, N. G. (2014). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164(3):354-372. cs/subtropics. Photosynthetica, 52(2), 161-178.

    Google Scholar 

  • Datta JK, Nag S, Banerjee A, Mondai NK (2009) Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. J Appl Sci Environ Mgmt 13(3):93–97

    Google Scholar 

  • Dehbalaei S, Farshadfar E, Farshadfar M (2013) Assessment of drought tolerance in bread wheat genotypes based on resistance/tolerance indices. Int J Agri Crop Sci 5(20):2352

    Google Scholar 

  • Dhingani RM, Umrania VV, Tomar RS, Parakhia MV, Golakiya BA (2015) Introduction to QTL mapping in plants. Ann Plant Sci 4(04):1072–1079

    Google Scholar 

  • Ding D, Li W, Song G, Qi H, Liu J, Tang J (2011) Identification of QTLs for arsenic accumulation in maize (Zea mays L.) using a RIL population. PLoS One 6(10):1–7

    Google Scholar 

  • Elgamal WH, El Sayed MAA, El Shamey EAZ, Anis GB (2018) Genetic diversity for cold tolerance at seedling stage in rice (Oryza sativa L.) under Egyptian conditions. J Agric Sci 44:101–113

    Google Scholar 

  • El-Sharkawy MA (2014) Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica 52(2):161–178

    Article  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Scientific World J 2015:1–18

    Article  CAS  Google Scholar 

  • FAO. (1996). Food, agriculture and food security: developments since the World Food Conference and prospects for the future. World Food Summit technical background document No. 1. Rome.

    Google Scholar 

  • Faraji A, Latifi N, Soltani A, Rad AHS (2008) Effect of high temperature stress and supplemental irrigation on flower and pod formation in two canola (Brassica napus L.) cultivars at Mediterranean climate. Asian J Plant Sci 7(4):343–351

    Article  Google Scholar 

  • Farooqi MQU, Lee JK (2016) Cold stress evaluation among maize (Zea mays L.) inbred lines in different temperature conditions. Biotechnol Plant Breeding 4:352–361

    Article  Google Scholar 

  • Farshadfar E, Saeidi M, Honarmand SJ (2012) Evaluation of drought tolerance screening techniques among some landraces of bread wheat genotypes. Eur J Exp Biol 2(5):1585–1592

    Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44(3):444–454

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Li W, Xing X, Xu M, Liu X, Li H, Xue Y, Liu Z, Tang J (2016) Genetic analysis of arsenic accumulation in maize using QTL mapping. Sci Rep 6:1–8

    Article  CAS  Google Scholar 

  • Gahlaut V, Jaiswal V, Tyagi BS, Singh G, Sareen S, Balyan HS, Gupta PK (2017) QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS One 12(8):1–27

    Article  CAS  Google Scholar 

  • Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganapati RK, Rehman MM, Kabiraj RC, Sen R, Islam MS (2016) Screening of water stress tolerant sugar beet (Beta vulgaris l.) genotypes. Int J Sustain Crop Prod 11(3):29–35

    Google Scholar 

  • Ghaderi N, Siosemardeh A (2011) Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Horti Environ Biotechnol 52(1):6–12

    Article  Google Scholar 

  • Gholinezhad E, Darvishzadeh R, Bernousi I (2014) Evaluation of Drought Tolerance Indices for Selection of Confectionery Sunflower (Helianthus anuus L.) Landraces under Various Environmental Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(1):187–201

    Article  Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty first century. Philos Trans Royal Soc B Biol Sci 365:2973–2989

    Article  Google Scholar 

  • Goudarzi M, Pakniyat H (2008) Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. J Agric Soc Sci 4(3):35–38

    Google Scholar 

  • Gul S, Nawaz MF, Azeem M (2016) Interactive effects of salinity and heavy metal stress on ecophysiological responses of two maize (Zea mays L.) cultivars. FUUAST. J Biol 6(1):81–87

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014

    Google Scholar 

  • Habibi F, Normohamady G, Sharif abad HH, Eivazi A, Heravan EM (2012) Effect of sowing date on cold tolerance and some agronomic traits in bread wheat genotypes grown at west Azerbaijan conditions. World Appl Sci J 16(2):232–239

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103:14288–14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq TU, Akhtar J, Nawaz S, Ahmad R (2009) Morpho-physiological response of rice (Oryza sativa L.) varieties to salinity stress. Pakistan J Bot 41(6):2943–2956

    Google Scholar 

  • Haq UI, Khan AA, Khan IA, Azmat MA (2012) Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny. J Zhejiang Univ Sci B 13(7):533–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haq TU, Akhtar J, Ali A, Maqbool MM, Ibrahim M (2014a) Evaluating the response of some canola (Brassica napus L.) cultivars to salinity stress at seedling stage. Pakistan J Agric Sci 51(3):571–579

    Google Scholar 

  • Haq T, Ali A, Nadeem SM, Maqbool MM, Ibrahim M (2014b) Performance of canola cultivars under drought stress induced by withholding irrigation at different growth stages. Soil Environ 33:43–50

    Google Scholar 

  • Hasnain A, Mahmood S, Akhtar S, Malik SA, Bashir N (2011) Tolerance and toxicity levels of boron in mung bean (Vigna radiata (L.) Wilczek) cultivars at early growth stages. Pakistan J Bot 43(2):1119–1125

    CAS  Google Scholar 

  • Hassen A, Maher S, Cherif H (2014) Effect of salt stress (NaCl) on germination and early seedling parameters of three pepper cultivars (Capsicum annuum L.). J Stress Physiol Biochem 10(1):14–25

    Google Scholar 

  • Hatfield J, Boote K, Fay P (2008) Agriculture. In The effects of climate change on agriculture, land resources, water resources, and agronomy for enhanced wheat competitiveness with weeds. Aust J Agri Res 52:527–548

    Article  Google Scholar 

  • Hendrix CS, Glaser SM (2007) Trends and triggers: Climate, climate change and civil conflict in Sub-Saharan Africa. Polit Geogr 26:695–715

    Article  Google Scholar 

  • Hervé D, Fabre F, Berrios EF, Leroux N, Chaarani GA, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot 52(362):1857–1864

    Article  PubMed  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil 318(1-2):311–325

    Article  CAS  Google Scholar 

  • Hussain MM, Saeed A, Khan AA, Javid S, Fatima B (2015) Differential responses of one hundred tomato genotypes grown under cadmium stress. Genet Mol Res 14(4):13162–13171

    Article  CAS  PubMed  Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Idrissi O, Udupa SM, De Keyser E, McGee RJ, Coyne CJ, Saha GC, Muehlbauer FJ, Damme PV, De Riek J (2016) Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population. Front Plant Sci 7:1–11

    Article  Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33(6):1768–1778

    Article  CAS  Google Scholar 

  • Ignjatovic-Micic D, Kostadinovic M, Bozinovic S, Andjelkovic V, Vancetovic J (2014) High grain quality accessions within a maize drought tolerant core collection. Scientia Agricola 71(5):402–409

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate Change. 2007: Synthesis Report. Contributionnof working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. core writing team. In: Pachauri RK, & Reisinger A (eds) Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M, eds. Cambridge, UK/New York: Cambridge University Press. http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml. Accessed 2 Jan 2015.

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2009) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Islam MR, Hassan L, Salam MA, Collard BCY, Singh RK, Gregorio GB (2011) QTL mapping for salinity tolerance at seedling stage in rice. Emirat J Food Agric 23(2):137–146

    Article  Google Scholar 

  • Izadi MH, Rabbani J, Emam Y, Pessarakli M, Tahmasebi A (2014) Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutr 37(4):520–531

    Article  CAS  Google Scholar 

  • Jaarsma R, de Vries RS, de Boer AH (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS One 8(3):1–10

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloid Surf B Biointerf 61(2):298–303

    Article  CAS  Google Scholar 

  • Janjua PZ, Samad G, Khan NU, Nasir M (2010) Impact of climate change on wheat production: a case study of Pakistan. Pakistan Dev Rev 49:799–822

    Article  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahrizi S, Sedghi M, Sofalian O (2013) Evaluation of the effect of salt stress on some of agronomic and morphological characters in ten durum wheat cultivars. Ann West Univ Timisoara. Ser Biol 16(1):19–24

    Google Scholar 

  • Kamyab-Talesh F, Mousavi SF, Asadi R, Rezaei M, Khaledian MR (2014) Evaluation of some rice cultivars’ response to salinity stress using resistance indices. Archiv Agron Soil Sci 60(9):1303–1314

    Article  CAS  Google Scholar 

  • Kaouther Z, Mariem BF, Fardaous M, Cherif H (2012) Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.). J Stress Physiol Biochem 8(4):236–252

    Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaya YV, Arısoy RZ (2016) Salinity tolerance in bread wheat cultivars from Turkey. Roman Biotechnol Lett 21(2):11321–11327

    CAS  Google Scholar 

  • Kesici M, Gulen H, Ergin S, Turhan E, Ahmet IPEK, Koksal N (2013) Heat-stress tolerance of some strawberry (Fragaria× ananassa) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(1):238–243

    Article  Google Scholar 

  • Khan F, Upreti P, Singh R, Shukla PK, Shirke PA (2017) Physiological performance of two contrasting rice varieties under water stress. Physiol Mol Biol Plants 23(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Kiani PS, Maury P, Nouri L, Ykhlef N, Grieu P, Sarrafi A (2009) QTL analysis of yield-related traits in sunflower under different water treatments. Plant Breeding 128(4):363–373

    Article  Google Scholar 

  • Kilic H, Yagbasanlar T (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):164–170

    Google Scholar 

  • Kirby JM, Mainuddin M, Mpelasoka F, Ahmad MD, Palash W, Quadir ME, Shah-Newaz SM, Hossain MM (2016) The impact of climate change on regional water balances in Bangladesh. Clim Change 135:481–491

    Article  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44(4):671–681

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65(21):6265–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Kaul J, Dubey RB, Singode A, GK C, Manivannan A, Debnath MK (2015) Assessment of drought tolerance in maize (Zea mays L.) based on different indices. SABRAO J Breed Genet 47(3):291–298

    Google Scholar 

  • Lang L, Xu A, Ding J, Zhang Y, Zhao N, Tian Z, Liu Y, Wang Y, Liu X, Liang F, Zhang B, Qin M, Dalelhan J, Huang Z (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:1–13

    Google Scholar 

  • Liang Y, Meng L, Lin X, Cui Y, Pang Y, Xu J, Li Z (2018) QTL and QTL networks for cold tolerance at the reproductive stage detected using selective introgression in rice. PloS One 13(9):1–16

    Google Scholar 

  • Liu X, Fan Y, Mak M, Babla M, Holford P, Wang F, Chen G, Scott G, Wang G, Shabala S, Zhou M, Chen ZH (2017) QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genom 18(1):1–13

    Article  Google Scholar 

  • Lobell D, Burke M, Tebaldi C, Mastrandera M, Falcon W, Naylor R (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Lounsbery JK, Arms EM, Bloom AJ, St Clair DA (2016) Quantitative Trait Loci for water-stress tolerance traits localize on Chromosome 9 of Wild Tomato. Crop Sci 56(4):1514–1525

    Article  CAS  Google Scholar 

  • Luan Z, Xiao M, Zhou D, Zhang H, Tian Y, Wu Y, Guan B, Song Y (2014) Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.). Scientific World J 2014:1–9

    Article  Google Scholar 

  • Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):1–13

    Article  Google Scholar 

  • Magadza CHD (2006) Climate change impacts and human settlements in Africa: prospects for adaptation. Environ Moni Assess 61:193–205

    Article  Google Scholar 

  • Mahmood S, Wahid A, Javed F, Basra SMA (2010) Heat stress effects on forage quality characteristics of maize (Zea mays) cultivars. Int J Agric Biol 12:701–706

    CAS  Google Scholar 

  • Majidi MM, Jafarzadeh M, Rashidi F, Mirlohi A (2015) Identification of canola cultivars with drought tolerance indices. Iran J Agric Sci 45(4):565–573

    Google Scholar 

  • Martínez P, Robledo D, Rodríguez-Ramilo ST, Hermida M, Taboada X, Pereiro P, Rubiolo JA, Ribas L, Gómez-Tato A, Dios J, Piferrer F, Novoa B, Figueras A, Pardo BG, Fernández J, Viñas A, Bouza C (2016) Turbot (Scophthalmus maximus) genomic resources: application for boosting aquaculture production. In: Genomics in aquaculture. Academic, pp 131–163

    Google Scholar 

  • Masuduzzaman, A., Ahmad, H., Haque, M., & Ahmed, M. M. E. (2016). Evaluation of rice lines tolerant to heat during flowering stage. Rice Res Open Access 4(6), 1-5.

    Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89(6):683–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Meeks M, Murray S, Hague S, Hays D (2013) Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 3(1):135–147

    Article  Google Scholar 

  • Meena HP, Bainsla NK, Yadav DK (2016) Breeding for Abiotic Stress Tolerance in Crop Plants. Daya Publishing House, New Delhi

    Google Scholar 

  • Meng L, Wang B, Zhao X, Ponce K, Qian Q, Ye G (2017) Association mapping of ferrous, zinc, and aluminum tolerance at the seedling stage in indica rice using MAGIC populations. Front Plant Sci 8:1–15

    Google Scholar 

  • Metwali EMR, Soliman HIA, Fuller MP, Almaghrabi OA (2015) Improving fruit quality in tomato (Lycopersicum esculentum Mill) under heat stress by silencing the vis 1 gene using small interfering RNA technology. Plant Cell, Tissue Organ Cult 121(1):153–166

    Article  CAS  Google Scholar 

  • Midmore DJ, Prange RK (1991) Sources of heat tolerance amongst potato cultivars, breeding lines, and Solanum species. Euphytica 55(3):235–245

    Article  Google Scholar 

  • Mirbahar AA, Markhand GS, Mahar AR, Abro SA, Kanhar NA (2009) Effect of water stress on yield and yield components of wheat (Triticum aestivum L.) varieties. Pakistan J Bot 41(3):1303–1310

    Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3(1):153–165

    Article  Google Scholar 

  • Mizoi J, Yamaguchi-Shinozaki K (2013) Molecular approaches to improve rice abiotic stress tolerance. Methods Mol Biol 956:269–283

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R (2018) Breeding for increased drought tolerance in wheat: a review. Crop Pasture Sci 69(3):223–241

    Article  Google Scholar 

  • Mohammadi P, Mohammadi M, Karizmizadeh R (2012) Selection for drought tolerance in durum wheat genotypes. Ann Biol Res 3(8):3898–3904

    Google Scholar 

  • Mohammadian R, Moghaddam M, Rahimian H, Sadeghian SY (2005) Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turkish J Agric Forest 29(5):357–368

    Google Scholar 

  • Moradi H, Akbari GA, Khorasani SK, Ramshini HA (2012) Evaluation of drought tolerance in corn (Zea mays L.) new hybrids with using stress tolerance indices. Eur J Sustain Dev 1(3):543–560

    Article  Google Scholar 

  • Muller C, Cramera W, Harea WL, Lotze-Campen H (2011) Climate change risks for African agriculture. Proc Nat Acad Sci U S A 108:4313–4315

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytologist 167(3):645–663

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ (2016) Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci 7:1–12

    Article  Google Scholar 

  • Naderi R, Emam Y (2014) Evaluation of rapeseed (Brassica napus L.) cultivars performance under drought stress. Aust J Crop Sci 8(9):1319–1323

    Google Scholar 

  • Naderikharaji R, Pakniyat H, Biabani AR (2008) Effect of drought stress on photosynthetic rate of four rapeseed (Brassica napus) cultivars. J Appl Sci 8:4460–4463

    Article  Google Scholar 

  • Nepstad D, Soares-Filho BS, Merry F (2009) The end of deforestation in the Brazilian Amazon. Science 326:1350–1351

    Article  CAS  PubMed  Google Scholar 

  • Ngugi K, Collins JO, Muchira S (2013) Combining, earliness, short anthesis to silking interval and yield based selection indices under intermittent water stress to select for drought tolerant maize. Aust J Crop Sci 7(13):2014–2020

    Google Scholar 

  • Nikolic A, Andelkovic V, Dodig D, Drinic MS, Kravic N, Micic DI (2013) Identification of QTL-s for drought tolerance in maize, II: yield and yield components. Genetika 45(2):341–350

    Article  Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 125(3):561–575

    Article  PubMed  Google Scholar 

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regulation 29:47–76

    Article  CAS  Google Scholar 

  • Pradheeban L, Nissanka SP, Suriyagoda LDB (2015) Screening commonly cultivated rice cultivars in Sri Lanka with special reference to Jaffna for salt tolerance at seedling stage under hydroponics. Int J Agron Agric Res 7:1–13

    Google Scholar 

  • Qie L, Jia G, Zhang W, Schnable J, Shang Z, Li W, Liu B, Li M, Chai Y, Zhi H, Diao X (2014) Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica× Setaria viridis. PloS One 9(7):1–8

    Article  CAS  Google Scholar 

  • Rad AHS, Abbasian A (2011a) Evaluation of drought tolerance in rapeseed genotypes under non stress and drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):164–171

    Article  Google Scholar 

  • Rad AHS, Abbasian A (2011b) Evaluation of drought tolerance in winter rapeseed cultivars based on tolerance and sensitivity indices. Žemdirbystė-Agriculture 98(1):41–48

    Google Scholar 

  • Rafiei F, Darbaghshahi MRN, Rezai A, Nasiri BM (2013) Survey of yield and yield components of sunflower cultivars under drought stress. Int J Adv Biol Biomed Res 1(12):1628–1638

    CAS  Google Scholar 

  • Rahman MA, Bimpong IK, Bizimana JB, Pascual ED, Arceta M, Swamy BM, Diaw F, Rahman MS, Singh RK (2017) Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice 10(1):1–7

    Article  Google Scholar 

  • Rajabi A, Vahidi H, Hadi MRHS, Taleghani DF (2013) Study on drought tolerance and interrelationships among some agronomic and morpho-physiological traits in sugar beet lines. Int J Agric Crop Sci 5(7):761–768

    Google Scholar 

  • Ramya P, Singh GP, Jain N, Singh PK, Pandey MK, Sharma K, Kumar A, Prabhu KV (2016) Effect of recurrent selection on drought tolerance and related morpho-physiological traits in bread wheat. PloS One 11(6):1–17

    Google Scholar 

  • Ranawake AL, Manangkil OE, Yoshida S, Ishii T, Mori N, Nakamura C (2014) Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.). Biotech Biotechnol Equip 28(6):989–998

    Article  CAS  Google Scholar 

  • Rao A, Ahmad SD, Sabir SM, Awan SI, Shah AH, Abbas SR, Shafique S, Khan F, Chaudhary A (2013) Potential antioxidant activities improve salt tolerance in ten varieties of wheat (Triticum aestivum L.). Am J Plant Sci 4(6A):69–76

    Article  CAS  Google Scholar 

  • Reddy VR, Pachepsky YA (2000) Predicting crop yields under climate change conditions from monthly GCM weather projections. Environ Modell Software 15:79–86

    Article  Google Scholar 

  • Ren Y, Xu Y, Teng W, Li B, Lin T (2018) QTLs for seedling traits under salinity stress in hexaploid wheat. Ciência Rural 48(3):1–9

    Article  Google Scholar 

  • Rhodes, D., & Nadolska-Orczyk, A. (2001). Plant stress physiology, in Encyclopaedia of Life Sciences (Nature Publishing Group). http://www.els.net.

  • Saadia M, Jamil A, Akram NA, Ashraf M (2012) A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules 17(5):5803–5815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeedipour S (2009) Appraisal of Some Physiological Selection Criteria for Evaluation of Salt Tolerance in Canola. Int J Appl 4(2):179–192

    Google Scholar 

  • Saensee K, Machikowa T, Muangsan N (2012) Comparative performance of sunflower synthetic varieties under drought stress. Int J Agric Biol 14(6):929–934

    Google Scholar 

  • Saha S, Kalia P, Sureja AK, Sarkar S (2016) Breeding tropical carrots (Daucus carota) for enhanced nutrition and high temperature stress. Ind J Agric Sci 86(7):940–945

    CAS  Google Scholar 

  • Sahney S, Benton MJ, Falcon-Lang HJ (2010) Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica. Geology 38:1079–1082

    Article  Google Scholar 

  • Sahoo RK, Ansari MW, Tuteja R, Tuteja N (2014) OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice 7(1):1–3

    Article  Google Scholar 

  • Samantaray S, Rout GR, Das P (1998) Differential nickel tolerance of mung bean (Vigna radiata L.) genotypes in nutrient culture. Agronomie 18(8-9):537–544

    Article  Google Scholar 

  • Sattar A, Iqbal MM, Areeb A, Ahmed Z, Irfan M, Shabbir RN, Aishia G, Hussain S (2015) Genotypic variations in wheat for phenology and accumulative heat unit under different sowing times. J Agric Environ Sci 2(8):1–8

    Google Scholar 

  • Sazzad K (2007) Exploring plant tolerance to biotic and abiotic stresses. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Sepehri A, Golparvar AR (2011) The effect of drought stress on water relations, chlorophyll content and leaf area in canola cultivars (Brassica napus L.). Electronic. J Biol 7:49–53

    Google Scholar 

  • Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119

    Article  CAS  PubMed  Google Scholar 

  • Shahryari R, Gurbanov E, Gadimov A, Hassanpanah D (2008) Tolerance of 42 bread wheat genotypes to drought stress after anthesis. Pakistan J Biol Sci 11(10):1330–1335

    Article  Google Scholar 

  • Shamim F, Saqlan SM, Athar HR, Waheed A (2014) Screening and Selection of Tomato Genotypes/Cultivars for Drought Tolerance Using Multivariate Analysis. Pakistan J Bot 46(4):1165–1178

    Google Scholar 

  • Shanmugavadivel, P. S., Sv, A. M., Prakash, C., Ramkumar, M. K., Tiwari, R., Mohapatra, T., & Singh, N. K. (2017). High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice 10(1):28 1-11.

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants—biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–115

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Priya M, Bindumadhava H, Nair RM, Nayyar H (2016) Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Scientia Horticulturae 213:379–391

    Article  Google Scholar 

  • Sharma DK, Torp AM, Rosenqvist E, Ottosen CO, Andersen SB (2017) QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front Plant Sci 8:1–14

    PubMed  PubMed Central  Google Scholar 

  • Shekoofa A, Bijanzadeh E, Emam Y, Pessarakli M (2013) Effect of salt stress on respiration of various wheat lines/cultivars at early growth stages. J Plant Nutr 36(2):243–250

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proc Nutr Soc 72:21–28

    Article  PubMed  Google Scholar 

  • Soda N, Wallace S, Karan R (2015) Omics study for abiotic stress responses in plants. Adv Plants Agric Res 2:1–7

    Google Scholar 

  • Soleymani A, Shahrajabian MH (2012) Study of cold stress on the germination and seedling stage and determination of recovery in rice varieties. Int J Biol 4(4):23–30

    Google Scholar 

  • Somayeh M, Roghie RJ, Shadi K (2012) Effect of salinity stress on chlorophyll content, proline, water soluble carbohydrate, germination, growth and dry weight of three seedling barley (Hordeum vulgare L.) cultivars. J Stress Physiol Biochem 8(4):157–168

    Google Scholar 

  • Tadesse W, Suleiman S, Tahir I, Sanchez-Garcia M, Jighly A, Hagras A, Baum MS (2018) Heat-tolerant QTLs associated with grain yield and its components in spring bread wheat under heat-stressed environments of Sudan and Egypt. Crop Sci 59:199–211

    Article  CAS  Google Scholar 

  • Taghizadegan M, Toorchi M, Vahed MM, Khayamim S (2019) Evaluation of sugar beet breeding populations based morpho-physiological characters under salinity stress. Pakistan J Bot 51(1):11–17

    CAS  Google Scholar 

  • Taherabadi S, Ghobadi M, Ghobadi ME, Mohammadi G, Honarmand SJ (2013) Using stress resistance indices in sunflower cultivars under mild and severe drought stress conditions. Am-Euras J Agric Environ Sci 13(5):647–653

    Google Scholar 

  • Talebi R, Fayaz F, Naji AM (2009) Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). General and Applied. Plant Physiol 35(1/2):64–74

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ Transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50(1):571–599

    Article  CAS  PubMed  Google Scholar 

  • Toorchi M, Naderi R, Kanbar A, Shakiba MR (2012) Response of spring canola cultivars to sodium chloride stress. Ann Biol Res 2(5):312–322

    Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2004) Maping QTLs regulating Morpho-physiological traits and yield: case studies, shortcomings and perspective in drought stressed maize. Ann Bot 89:941–963

    Article  CAS  Google Scholar 

  • Turki N, Shehzad T, Harrabi M, Tarchi M, Okuno K (2014) Variation in response to salt stress at seedling and maturity stages among durum wheat varieties. J Arid Land Stud 24:261–264

    Google Scholar 

  • Turki N, Shehzad T, Harrabi M, Okuno K (2015) Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica 201(1):29–41

    Article  CAS  Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121(2):229–236

    Article  CAS  PubMed  Google Scholar 

  • Ulukan H (2011) Responses of cultivated plants and some preventive measures against climate change. Int J Agric Biol 13:292–296

    Google Scholar 

  • Valiollah R (2013) Effect of salinity stress on yield, component characters and nutrient compositions in rapeseed (Brassica napus L.) genotypes. Agric Trop Subtrop 46(2):58–63

    Article  Google Scholar 

  • Wahb-Allah MA, Alsadon AA, Ibrahim AA (2011) Drought tolerance of several tomato genotypes under greenhouse conditions. World Appl Sci J 15(7):933–940

    Google Scholar 

  • Wainaina CM, Makihara D, Nakamura M, Ikeda A, Suzuki T, Mizukami Y, Nonoyama T, Doi K, Kikuta M, Samejima H, Menge DM, Yamauchi A, Kitano H, Kimani JM, Inukai Y (2018) Identification and validation of QTLs for cold tolerance at the booting stage and other agronomic traits in a rice cross of a Japanese tolerant variety, Hananomai, and a NERICA parent, WAB56-104. Plant Prod Sci 21(2):132–143

    Article  Google Scholar 

  • Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012) QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 7(12):1–9

    Article  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit. J Exp Bot 58:339–349

    Article  CAS  PubMed  Google Scholar 

  • Wijewardana C, Hock M, Henry RKR (2015) Screening corn hybrids for cold tolerance using morphological traits for early-season seeding. Crop Sci 55:851–867

    Article  Google Scholar 

  • Xu J, Driedonks N, Rutten MJ, Vriezen WH, de Boer GJ, Rieu I (2017) Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol Breed 37(58):1–9

    Google Scholar 

  • Yao N, Lee CR, Semagn K, Sow M, Nwilene F, Kolade O, Boco R, Oyetunji O, Mitchell-Olds T, Ndjiondjop MN (2016) QTL mapping in three rice populations uncovers major genomic regions associated with African rice gall midge resistance. PloS One 11:1–17

    Google Scholar 

  • Ye C, Argayoso MA, Redoña ED, Sierra SN, Laza MA, Dilla CJ, Mo Y, Thomson MJ, Chin J, Delaviña CB, Diaz GQ, Hernandez JE (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    Article  CAS  Google Scholar 

  • Yousfi N, Slama I, Ghnaya T, Savoure A, Abdelly C (2010) Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. CR Biol 333:205–213

    Article  CAS  Google Scholar 

  • Zhao X, Peng Y, Zhang J, Fang P, Wu B (2018) Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci 58:507–520

    Article  CAS  Google Scholar 

  • Zhou G, Johnson P, Ryan PR, Delhaize E, Zhou M (2012) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Breed 29:427–436

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, Q. et al. (2020). Breeding Plants for Future Climates. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. https://doi.org/10.1007/978-981-15-2156-0_27

Download citation

Publish with us

Policies and ethics