Skip to main content

Molecular Level Insight into the Involvement of Heat Shock Proteins in Oxidative-Stress-Mediated Human Diseases

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

Heat shock proteins (HSPs) are molecular chaperons that are duly responsible for catalyzing the bonafide folding of incipient proteins as well as refolding of denatured proteins. Under certain pathological conditions, these stress proteins play a few cytoprotective ventures through the commencement of protein folding, repairing, misfolded peptide refolding, as well as feasible degradation of irremediable ones. Elevated reactive oxygen species (ROS) in cellular levels often result in imprudent apoptosis. This subsequently leads to the amplification of inflammatory reactions. This is familiar in the pathogenesis as well as in the succession of various human inflammatory diseases (HIDs), respiratory diseases, cancer, and other deadly diseases. For example, chronic obstructive pulmonary disease (COPD) is designated by an imbalance in oxidants and antioxidants, as well as vivid inflammatory response. Evidence proposes that HSPs have a crucial role in retaining a proper balance between oxidants/antioxidants in COPD patients. HSP 70 usually plays a key role in neuroprotection by delaying the prognosis of neurodegenerative diseases as well as preventing senescence. This chapter discusses how some of the important oxidative-stress-mediated human diseases can be barcoded by several heat shock proteins to redeem their disease-specific aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jaattela M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271

    Article  CAS  Google Scholar 

  2. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92(19):1564–1572

    Article  CAS  Google Scholar 

  3. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    Article  CAS  Google Scholar 

  4. Milarski KL, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci U S A 83:9517–9521

    Article  CAS  Google Scholar 

  5. Hang H, He L, Fox MH (1995) Cell cycle variation of Hsp70 levels in HeLa cells at 37°C and after a heat shock. J Cell Physiol 165:367–375

    Article  CAS  Google Scholar 

  6. Knauf U, Bielka H, Gaestel M (1992) Over-expression of the small heat-shock protein, hsp25, inhibits growth of Ehrlich ascites tumor cells. FEBS Lett 309:297–302

    Article  CAS  Google Scholar 

  7. Galea-Lauri J, Latchman DS, Katz DR (1996) The role of the 90-kDa heat shock protein in cell cycle control and differentiation of the monoblastoid cell line U937. Exp Cell Res 226:243–254

    Article  CAS  Google Scholar 

  8. Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228–236

    Article  CAS  Google Scholar 

  9. Shukla V, Mishra S, Pant H (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011:572634. https://doi.org/10.1155/2011/572634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ünver R, Deveci F, Kırkıl G, Telo S, Kaman D, Kuluöztürk M (2016) Serum heat shock protein levels and the relationship of heat shock proteins with various parameters in chronic obstructive pulmonary disease patients. Turk thorac J 17(4):153–159. https://doi.org/10.5152/TurkThoracJ.2016.003

  11. Rahman I (2005) Oxidative stress in pathogenesis of chronic obstructive pulmonary disease. Cell Biochem Biophys 43:167–188. https://doi.org/10.1385/CBB:43:1:167

    Article  PubMed  CAS  Google Scholar 

  12. Chatterjee S (2016) Oxidative stress, inflammation, and disease. Oxid Stress Biomater:35–58. https://doi.org/10.1016/b978-0-12-803269-5.00002-4

  13. Ikwegbue P, Masamba P, Oyinloye B, Kappo A (2018) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11:2. https://doi.org/10.3390/ph11010002

    Article  CAS  Google Scholar 

  14. Lackie ER, Maciejewski A, Ostapchenko GV, Marques-Lopes J, Choy W, Duennwald ML, Prado FV, Prado M (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254. https://doi.org/10.3389/fnins.2017.00254

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jan Ankersmit H, Nickl S, Hoeltl E, Toepker M, Lambers C, Mitterbauer A, Kortuem B, Zimmermann M, Moser B, Bekos C, Steinlechner B, Hofbauer H, Klepetko W, Schenk P, Dome B (2012) Increased serum levels of HSP27 as a marker for incipient chronic obstructive pulmonary disease in young smokers. Respiration 83:391–399

    PubMed  Google Scholar 

  16. Park HK, Park EC, Bae SW, Park MY, Kim SW, Yoo HS, Tudev M, Ko YH, Choi YH, Kim S, Kim DI, Kim YW, Lee BB, Yoon JB, Park JE (2006) Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circulation 114:886–893

    Article  CAS  Google Scholar 

  17. Djamali A, Reese S, Oberley T, Hullett D, Becker B (2005) Heat shock protein 27 in chronic allograft nephropathy: a local stress response. Transplantation 79:1645–1657

    Article  CAS  Google Scholar 

  18. Madrigal-Matute J, López-Franco O, Blanco-Colio LM, Muñoz-García B, Ramos-Mozo P, Ortega L, Egido J, Martín-Ventura JL (2010) Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 86:330–337

    Article  CAS  Google Scholar 

  19. Sevin M, Girodon F, Garrido C, de Thonel A (2015) HSP90 and HSP70. Implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediators Inflamm 2015:970242

    Article  CAS  Google Scholar 

  20. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318. https://doi.org/10.1016/j.addr.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  21. Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396. https://doi.org/10.1038/nrm3810

    Article  PubMed  CAS  Google Scholar 

  22. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  PubMed  CAS  Google Scholar 

  23. Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J et al (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–779. https://doi.org/10.1016/j.cell.2012.04.016

    Article  PubMed  CAS  Google Scholar 

  24. Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 87:511–519. https://doi.org/10.1007/BF00294178

    Article  PubMed  CAS  Google Scholar 

  25. Perez N, Sugar J, Charya S, Johnson G, Merril C, Bierer L et al (1991) Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res Mol Brain Res 11:249–254. https://doi.org/10.1016/0169-328X(91)90033-T

    Article  PubMed  CAS  Google Scholar 

  26. Ostapchenko VG, Beraldo FH, Mohammad AH, XieY F, Hirata PH, Magalhaes AC et al (2013) The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-beta oligomer toxicity. J Neurosci 33:16552–16564. https://doi.org/10.1523/JNEUROSCI.3214-13.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Morimoto RI (1991) Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cells 3:295–301

    PubMed  CAS  Google Scholar 

  28. Fuller KJ, Issels RD, Slosman DO, Guillet JG, Soussi T, Polla BS (1994) Cancer and the heat shock response. Eur J Cancer 30A:1884–1891

    Article  CAS  Google Scholar 

  29. Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85:1558–1570

    Article  CAS  Google Scholar 

  30. Kaur J, Ralhan R (1995) Differential expression of 70-kDa heat shock-protein in human oral tumorigenesis. Int J Cancer 63:774–779

    Article  CAS  Google Scholar 

  31. Ralhan R, Kaur J (1995) Differential expression of Mr 70,000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin Cancer Res 1:1217–1222

    PubMed  CAS  Google Scholar 

  32. Santarosa M, Favaro D, Quaia M, Galligioni E (1997) Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 33:873–877

    Article  CAS  Google Scholar 

  33. Jameel A, Skilton RA, Campbell TA, Chander SK, Coombes RC, Luqmani YA (1992) Clinical and biological significance of HSP89 alpha in human breast cancer. Int J Cancer 50:409–415

    Article  CAS  Google Scholar 

  34. Yufu Y, Nishimura J, Nawata H (1992) High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res 16:597–605

    Article  CAS  Google Scholar 

  35. Hsu PL, Hsu SM (1998) Abundance of heat shock proteins (hsp89, hsp60, and hsp27) in malignant cells of Hodgkin’s disease. Cancer Res 58:5507–5513

    PubMed  CAS  Google Scholar 

  36. Nevins JR (1982) Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29:913–919

    Article  CAS  Google Scholar 

  37. Wu BJ, Hurst HC, Jones NC, Morimoto RI (1986) The E1A 13S product of adenovirus 5 activates transcription of the cellular human HSP70 gene. Mol Cell Biol 6:2994–2999

    Article  CAS  Google Scholar 

  38. Williams GT, McClanahan TK, Morimoto RI (1989) E1a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol Cell Biol 9:2574–2587

    Article  CAS  Google Scholar 

  39. Cappello F, Di Stefano A, David S, Rappa F, Anzalone R, La Rocca G, D’Anna SE, Magno F, Donner CF, Balbi B, Zummo G (2006) HSP60 and HSP10 Down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 107(10):2417–2424

    Article  CAS  Google Scholar 

  40. He L, Lemasters JJ (2003) Heat shock suppresses the permeability transition in rat liver mitochondria. J Biol Chem 278:16755–16760

    Article  CAS  Google Scholar 

  41. Cappello F, Bellafiore M, David S et al (2003) Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Lett 196:35–41

    Article  CAS  Google Scholar 

  42. Cappello F, Rappa F, David S et al (2003) Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 23:1325–1331

    PubMed  CAS  Google Scholar 

  43. Cappello F, Bellafiore M, Palma A et al (2003) 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47:105–110

    Article  CAS  Google Scholar 

  44. Thomas X, Campos L, Mounier C et al (2005) Expression of heatshock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res 29:1049–1058

    Article  CAS  Google Scholar 

  45. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 18:2040–2048

    Article  CAS  Google Scholar 

  46. Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19

    Article  CAS  Google Scholar 

  47. Kinnula VL, Crapo JD, Raivio KO (1995) Biology of disease. Generation and disposal of reactive oxygen metabolites in the lung. Lab Inv 73:3–19

    CAS  Google Scholar 

  48. Camhi S, Lee P, Choi AMK (1995) The oxidative stress response. New Horiz 3:170–182

    PubMed  CAS  Google Scholar 

  49. Jornot L, Junod AF (1992) Response of human endothelial cell antioxidant enzymes to hyperoxia. Am. J. Respir. Cell Mol. Biol. 6:107115

    Article  Google Scholar 

  50. Choi AMK, Sylvester SL, Otterbein L, Holbrook NJ (1995) Molecular responses to hyperoxia in vivo: relationship to increased tolerance in aged rats. Am J Respir Cell Mol Biol 13:74–82

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges DBT-funded BIF, University of Kalyani, for providing infrastructure facilities, and the Department of Science and Technology and Biotechnology of West Bengal Govt. for financial support (Project SA. No./ST/P/S&T/1-G14/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, S., Bagchi, A., Dasgupta, R. (2020). Molecular Level Insight into the Involvement of Heat Shock Proteins in Oxidative-Stress-Mediated Human Diseases. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_12

Download citation

Publish with us

Policies and ethics