Skip to main content
Log in

Expression of HSP70 Heat-Shock Proteins under Oxidative Stress

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The development of oxidative stress inevitably causes damage to cell proteins in need of timely refolding. The synthesis of the proteins of the heat-shock group is the most ancient and effective mechanism of cell protection. The life-long cellular adaptation to a huge number of cytotoxic factors, both of xenobiotic and natural origin, have provided heat-shock proteins with polyfunctionality: in the processes of programmed death, they act as either anti- or pro-apoptogenic factors or as regulators of the activity of these factors. The important role of heat-shock proteins in adaptation, inflammation, and immune response had also been shown. Various experimental and clinical studies confirmed the important role of heat-shock proteins in the development of pathophysiological phenomena of oxidative stress, aging, tumor formation, and immune reactions. The data presented in the review includes domestic and foreign studies on the physiological significance of heat-shock proteins, their role in the mechanisms of cell, and body stability in general and are relevant to modern medicine and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andreeva, L.I., Theoretical and applied value of 70 kDa heat shock proteins: the possible practical application and pharmacological correction, Obzory Klin. Farmakol. Lek. Ter., 2002, vol. 1, no. 2, pp. 2–14.

    Google Scholar 

  2. Grigorian, I.Yu., Linkova, N.S., Polyakova, V.O., et al., Signaling molecules of the endometrium: gerontological and general pathological aspects, Adv. Gerontol., 2016, vol. 6, no. 1, pp. 36–43.

    Article  Google Scholar 

  3. Kabalyk, M.A., Age-related aspects of the involvement of heat shock proteins in the pathogenesis of osteoarthritis, Adv. Gerontol., 2017, vol. 7, no. 4, pp. 276–280.

    Article  Google Scholar 

  4. Kabalyk, M.A., Clinical and pathogenetic role of 70- and 27-kDa heat shock proteins in osteoarthritis, Nauchno-Prakt.Revmatol., 2017, vol. 55, no. 2, pp. 187–191.

    Google Scholar 

  5. Kolesov, S.A., Zhukova, E.A., Korkotashvili, L.V., et al., Nitric oxide metabolites, heat shock proteins 70, proinflammatory cytokines in children with inflammatory bowel diseases, Mezhdunar. Zh. Prikl. Fundam. Issled., 2014, no. 4, pp. 75–78.

  6. Kolesnikova, L.I., Kurashova, N.A., Grebenkina, L.A., et al., Features of oxidative stress in men of different ethnic groups with obesity and infertility, Zdorov’e. Med. Ekol. Nauka, 2011, vol. 44, no. 1, pp. 38–41.

    Google Scholar 

  7. Kolesnikova, L.I., Osipova, E.V., and Grebenkina, L.A., Okislitel’nyi stress pri reproduktivnykh narusheniyakh endokrinnogo geneza u zhenshchin (Oxidative Stress in Reproductive Disorders of Endocrine Genesis in Women), Novosibirsk, 2011.

    Google Scholar 

  8. Kuznik, B.I., Linkova, N.S., and Khavinson, V.K., Heat shock proteins: changes related to aging, development of thrombotic complications, and peptide regulation of the genome, Adv. Gerontol., 2012, vol. 2, no. 3, pp. 175–186.

    Article  Google Scholar 

  9. Kuznik, B.I., Khavinson, V.Kh., Lin’kova, N.S., et al., Fibroblast growth factors FGF19, FGF21, FGF23 as endocrine regulators of physiological functions and geroprotectors: epigenetic regulatory mechanisms, Usp. Sovrem. Biol., 2017, vol. 137, no. 1, pp. 84–99.

    Google Scholar 

  10. Madaeva, I.M., Petrova, V.A., Kolesnikova, L.I., and Shevyrtalova, O.N., Obstructive sleep apnea/hypopnea syndrome and lipid peroxidation, Pul’monologiya, 2009, no. 2, pp. 65–69.

  11. Nikitin, K.D., Heat shock proteins: biological functions and prospective use, Klin. Onkogematol. Fundam. Issled. Klin. Prakt., 2008, vol. 1, no. 2, pp. 125–130.

    Google Scholar 

  12. Pastukhov, Yu.F., Ekimova, I.V., Khudik, K.A., and Guzhova, I.V., Protein 70 kDa in the control of sleep and thermoregulation, J. Evol. Biochem. Physiol., 2008, vol. 44, no. 1, pp. 74–81.

    Article  CAS  Google Scholar 

  13. Pastukhov, Yu.F., Khudik, K.A., and Ekimova, I.V., Role of chaperones in the regulation and recovery of physiological functions, Ross. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 96, no. 7, pp. 708–725.

    CAS  PubMed  Google Scholar 

  14. Pastukhov, Yu.F., Plaksina, D.V., Lapshina, K.V., et al., Exogenous protein HSP70 blocks neurodegeneration in the rat model of the clinical stage of Parkinson’s disease, Dokl. Biol. Sci., 2014, vol. 457, no. 1, pp. 225–227.

    Article  Google Scholar 

  15. Pastukhov, Yu.F., Simonova, V.V., Guzeev, M.A., et al., Chaperon HSP70 is involved into molecular mechanisms of regulation of slow sleep, Dokl. Ross. Akad. Nauk, 2015, vol. 461, no. 2, p. 228.

    Google Scholar 

  16. Pastukhov, Yu.F., Slow-wave sleep and molecular chaperones, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 1, pp. 87–101.

    Article  CAS  Google Scholar 

  17. Khavinson, V.Kh., Lin’kova, N.S., Trofimov, A.V., et al., Morphofunctional principles of peptide regulation of aging, Usp. Sovrem. Biol., 2011, vol. 131, no. 2, p. 115.

    CAS  Google Scholar 

  18. Khavinson, V.Kh., A single mechanism of peptide regulation of gene expression and protein synthesis in living nature, Vestn. Vosstanov. Med., 2017, no. 1, pp. 60–62.

  19. Chebotareva, N.V., Bobkova, I.N., Neprintseva, N.I., and Kozlovskaya, L.V., Clinical determination of serum and urinary indices of HSP70 in patients with chronic glomerulonephritis, Al’m. Klin. Med., 2014, no. 30, pp. 18–24.

  20. Anisimov, V.N. and Khavinson, V.Kh., Peptide bioregulation of aging: results and prospects, Biogerontology, 2010, vol. 11, p. 139.

    Article  CAS  Google Scholar 

  21. Asea, A., Rehli, M., Kabingu, E., et al., Novel signal transduction pathway utilized by extracellular HSP70. Role of Toll-like receptor (TLR) 2 and TLR4, J. Biol. Chem., 2002, vol. 277, no. 17, pp. 15028–15034.

    Article  CAS  Google Scholar 

  22. Barral, J.M., Broadley, S.A., Schaffar, G., and Hartl, F.U., Roles of molecular chaperones in protein misfolding diseases, Semin. Cell Dev. Biol., 2004, vol. 15, pp. 17–29.

    Article  CAS  Google Scholar 

  23. Bianchi, A., Moulin, D., Hupont, S., et al., Oxidative stress-induced expression of HSP70 contributes to the inhibitory effect of 15d-PGJ2 on inducible prostaglandin pathway in chondrocytes, Free Radicals Biol. Med., 2014, vol. 76, pp. 114–126. https://doi.org/10.1016/j.freeradbiomed.2014.07.028

    Article  CAS  Google Scholar 

  24. Calabrese, V.I., Butterfield, D.A., Scapagnini, G., et al., Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity, Antioxid. Redox Signaling, 2006, vol. 8, nos. 3–4, pp. 444–477. https://doi.org/10.1089/ars.2006.8.444

  25. Calabrese, V.I., Cornelius, C., Dinkova-Kostova, A.T., and Calabrese, E.J., Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis, Biofactors, 2009, vol. 35, no. 2, pp. 146–160. https://doi.org/10.1002/biof.22

    Article  CAS  PubMed  Google Scholar 

  26. Campanella, C., Pace, A., Bavisotto, C.C., et al., Heat shock proteins in Alzheimer’s disease: role and targeting, Int. J. Mol. Sci., 2018, vol. 19, no. 9, p. 2603. https://doi.org/10.3390/ijms19092603

    Article  CAS  PubMed Central  Google Scholar 

  27. Cedenho, A.P., Lima, S.B., Cenedeze, M.A., et al., Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa, Hum. Reprod., 2006, vol. 21, no. 7, pp. 1791–1794. https://doi.org/10.1093/humrep/del055

    Article  CAS  PubMed  Google Scholar 

  28. Correa, S.G., Maccioni, M., Rivero, V.E., et al., Cytokines and the immune-neuroendocrine network: what did we learn from infection and autoimmunity?, Cytokine Growth Factor Rev., 2007, vol. 18, no. 1–2, pp. 125–134.

  29. Cunningham, T.J., Greenstein, J.I., Loewenstern, J., et al., Anti-inflammatory peptide regulates the supply of heat shock protein 70 monomers: implications for aging and age-related disease, Rejuvenation Res., 2015, vol. 18, no. 2, pp. 136–144. https://doi.org/10.1089/rej.2014.1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Danzer, K.M., Ruf, W.P., Putcha, P., et al., Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity, FASEB J., 2011, vol. 25, pp. 326–336.

    Article  CAS  Google Scholar 

  31. De Mena, L., Chhangani, D., Fernandez-Funez, P., and Rincon-Limas, D.E., secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids, Fly (Austin), 2017, vol. 11. № 3. 179–184. https://doi.org/10.1080/19336934.2017.1291104

    Article  PubMed  PubMed Central  Google Scholar 

  32. Demirovic, D., De Toda, I.M., Nizard, C., and Rattan, S.I.S., Differential translocation of heat shock factor-1 after mild and severe stress to human skin fibroblasts undergoing aging in vitro, J. Cell Commun. Signaling, 2014, vol. 8, no. 4, pp. 333–339.

    Article  Google Scholar 

  33. De Toda, M.I. and De la Fuente, M., The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan, Biogerontology, 2015, vol. 16, no. 6, pp. 709–721. https://doi.org/10.1007/s10522-015-9607-7

    Article  CAS  Google Scholar 

  34. Ebrahimi Fakhari, D., Wahlster, L., and McLean, P.J., Molecular chaperones in Parkinson’s disease-present and future, J. Parkinsons Dis., 2011, vol. 1, no. 4, pp. 299–320.

    Article  CAS  Google Scholar 

  35. Ekimova, I.V., Nitsinskaya, L.E., Romanova, I.V., et al., Exogenous protein HSP70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures, J. Neurochem., 2010, vol. 115, no. 4, pp. 1035–1044.

    Article  CAS  Google Scholar 

  36. Guzhova, I.V., Kislyakova, K., Moskaliova, O., et al., In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance, Brain Res., 2001, vol. 914, pp. 66–73.

    Article  CAS  Google Scholar 

  37. Hinault, M.P., Farina-Henriquez-Cuendet, A., and Goloubinoff, P., Molecular chaperones and associated cellular clearance mechanisms against toxic protein conformers in Parkinson’s disease, Neurodegener. Dis., 2011, vol. 8, pp. 397–412.

    Article  CAS  Google Scholar 

  38. Jones, D.R., Moussaud, S., and McLean, P., Targeting heat shock proteins to modulate α-synuclein toxicity, Ther. Adv. Neurol. Dis., 2014, vol. 7, no. 1, pp. 33–51.

    Article  Google Scholar 

  39. Kakimura, J., Kitamura, Y., Takata, K., et al., Microglial activation and amyloidbeta clearance induced by exogenous heat shock proteins, FASEB. J., 2002, vol. 16, no. 6, pp. 601–603.

    Article  CAS  Google Scholar 

  40. Kraskovskaya, N.A., Kukanova, E.O., Lin’kova, N.S., et al., Correction to: tripeptides restore the number of neuronal spines under conditions of in vitro modeled Alzheimer’s disease, Bull. Exp. Biol. Med., 2017, vol. 163, no. 5, pp. 699–699. https://doi.org/10.1007/s10517-017-3882-z

    Article  CAS  PubMed  Google Scholar 

  41. Lazarev, V.F., Mikhaylova, E.R., Guzhova, I.V., and Margulis, B.A., Possible function of molecular chaperones in diseases caused by propagating amyloid aggregates, Front. Neurosci., 2017, vol. 11, p. 277. https://doi.org/10.3389/fnins.2017.00277

    Article  PubMed  PubMed Central  Google Scholar 

  42. Malkus, K.A. and Ischiropoulos, H., Regional deficiencies in chaperone-mediated autophagy underlie α‑synuclein aggregation and neurodegeneration, Neurobiol. Dis., 2012, vol. 46, no. 3, pp. 732–744.

    Article  CAS  Google Scholar 

  43. Naidoo, N., Ferber, M., Master, M., et al., Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling, J. Neurosci., 2008, vol. 28, no. 26, pp. 6539–6548.

    Article  CAS  Google Scholar 

  44. Neef, D.W., Jaeger, A.M., and Thiele, D.J., Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases, Nat. Rev. Drug Discovery, 2011, vol. 10, no. 12, pp. 930–944.

    Article  CAS  Google Scholar 

  45. Nixon, B., Bromfield, E.G., Dun, M.D., et al., The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition, Asian J. Androl., 2015, vol. 17, pp. 568–573. https://doi.org/10.4103/1008-682X.151395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohayon, M.M., Carskadon, M.A., Guilleminault, C., and Vitiello, M.V., Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan, Sleep, 2004, vol. 27, pp. 1255–1273.

    Article  Google Scholar 

  47. Pastukhov, Y.F., Plaksina, D.V., Lapshina, K.V., et al., Exogenous protein hsp70 blocks neurodegeneration in the rat model of the clinical stage of Parkinson’s disease, Dokl. Biol. Sci., 2014, vol. 457, no. 1, pp. 225–227.

    Article  Google Scholar 

  48. Pockley, A.G., Shepherd, J., and Corton, J.M., Detection of heat shock protein 79 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals, Immunol. Invest., 1998, vol. 6, no. 27, pp. 367–377.

    Article  Google Scholar 

  49. Romão-Veiga, M., Matias, M.L., Nunes, V.R., et al., Cytokine Induction of systemic inflammation by hyaluronan and hsp70 in women with pre-eclampsia, Cytokine, 2018, vol. 105, pp. 23–31. https://doi.org/10.1016/j.cyto.2018.02.007

  50. Sakharov, D.A., Stepanov, A.V., Shkurnikov, M.Yu., and Tonevitskii, A.G., Short-term highly intense physiological stress causes an increase in the expression of heat shock protein in human leukocytes, Bull. Exp. Biol. Med., 2009, vol. 147, no. 3, pp. 361–365.

    Article  CAS  Google Scholar 

  51. Saghafi, N., Pourali, L., Ghavami Ghanbarabadi, V., et al., Serum heat shock protein 70 in pre-eclampsia and normal pregnancy: a systematic review and meta-analysis, Int. J. Reprod. Biomed., 2018, vol. 16, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  52. Salminen, A., Ojala, J., Kaarniranta, K., et al., Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease, Prog. Neurobiol., 2011, vol. 93, no. 1, pp. 99–110.

    Article  CAS  Google Scholar 

  53. Vitenberga, Z. and Pilmane, M., Age-related lung tissue remodeling due to the local distribution of MMP-2, TIMP-2, TGF-β and Hsp70, Biotech. Histochem., 2018, vol. 12, pp. 1–10. https://doi.org/10.1080/10520295.2017.1421322

    Article  CAS  Google Scholar 

  54. Wang, X., Chen, M., Zhou, J., and Zhang, X., HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review), Int. J. Oncol., 2014, vol. 45, no. 1, pp. 18–30.

    Article  Google Scholar 

  55. Wolfe, K.J. and Cyr, D.M., Amyloid in neurodegenerative diseases: friend or foe?, Semin. Cell. Dev. Biol., 2012, vol. 22, no. 5, pp. 476–481.

    Article  Google Scholar 

  56. Zinsmaier, K.E. and Bronk, P., Molecular chaperones and the regulation of neutransmitter exocytosis, Biochem. Pharmacol., 2001, vol. 1, no. 62, pp. 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kurashova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurashova, N.A., Madaeva, I.M. & Kolesnikova, L.I. Expression of HSP70 Heat-Shock Proteins under Oxidative Stress. Adv Gerontol 10, 20–25 (2020). https://doi.org/10.1134/S2079057020010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057020010099

Keywords:

Navigation