Skip to main content

Agronomic Crop Responses and Tolerance to Drought Stress

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Drought (water stress) is one of the most important stresses that occurs widely in agricultural fields and can affect different aspects of crop growth, development, and metabolism. There are several reasons of drought stress in agriculture fields, including low rainfall or irrigation, high and low temperature, high intensity of light, high EC (electrical conductivity) due to salinity and fertilizer misapplication, etc. Plant water potential and turgor decline in dehydration condition; therefore, plant cells could not do normal functions and inducing all drought stress aspects in plants. In addition, it can negatively affect quantity and quality of growth and yield in crops. Plants are sessile organisms and must tolerate environmental stresses; hence, they have developed various mechanisms for resistance to stresses such as drought stress. Moreover, as plants are multicellular organisms, their responses to environmental stresses such as drought are complex. Generally, plant resistance to environmental stress is divided into two main strategies: stress avoidance and stress tolerance. Besides tolerance, avoidance is one of the common drought resistance mechanisms in annual plants. Escape from stress conditions is the strategy for plant growth under drought condition that is less important in agronomic plants. The alteration in resistance capacity of crops’ seeds and young seedlings by priming methods, production of tolerant crops by traditional breeding methods, and the generation of transgenic plants by gene manipulation are useful procedures to minimize the negative effects of drought on agronomic products. In addition, several strategies for drought management in agricultural fields on multiple levels can be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HTP:

5-hydroxy-L-tryptophan

ABA:

abscisic acid

AFLP:

amplified fragment length polymorphism

ALA:

5-aminolevulinic acid

AM:

arbuscular mycorhizal fungi

APX:

ascorbate peroxidase

BABA:

β-aminobutyric acid

BR:

brassinosteroid

CAT:

catalase

CPK:

Ca2+-dependent protein kinase

EC:

electrical conductivity

ERF:

ethylene response factors

GABA:

γ- aminobutyric acid

Gas:

Gibberellins

GB:

glycine betaine

GR:

glutathione reductase

GSH:

glutathione

H2O2:

hydrogen peroxide

IAA:

indole-3- acetic acid

JA:

jasmonic acid

L-DOPA:

L-3,4-dihydroxyphenylalanine

LEA:

late embryogenesis abundant

LMW:

low molecular weight

MGDG:

monogalactosyldiacylglycerol

O2•−:

superoxide radical

OH:

hydroxyl radical

P5CR:

pyrroline-5-carboxylate reductase

PEG:

polyethylene glycol

PM-ATPase:

plasma membrane ATPase

POD:

peroxidase

PP2Cs:

protein phosphatase 2Cs

QTL:

quantitative trait loci

RAPDs:

random amplified polymorphic DNA

RCS:

reactive carbonyl species

RFLPs:

restriction fragment length polymorphisms

RNS:

reactive nitrogen species

RO:

alkoxy radicals

ROS:

reactive oxygen species

RSS:

reactive sulfur species

RuBisCO:

ribulose bisphosphate carboxylase/oxygenase

RWC:

relative water content

SA:

salicylic acid

SCARs:

sequence characteristic amplified regions

SnRK2s:

SNF1-related protein kinase 2s

SOD:

superoxide dismutase

SSRs:

simple sequence repeats

TF:

transcription factors

VOCs:

volatile organic compounds

References

  • Abdelmoneim TS, Tarek AAM, Almaghrabi OA, Alzahrani HS, Abdelbagi I (2014) Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Sci J 11:10–17

    Google Scholar 

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  CAS  PubMed  Google Scholar 

  • Akhtar I, Nazir N (2013) Effect of water logging and drought stress in plants. Int J Water Res Environ Sci 2:34–40

    Google Scholar 

  • Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Ozturk M, Athar HR (2009) Salinity and water stress, improving crop efficiency. Springer, Dordrecht

    Book  Google Scholar 

  • Barriopedro D, Gouveia C, Trigo RM, Wang L (2012) The 2009/10 drought in China: possible causes and impacts on vegetation. Amer Meteor Soc 13:1251–1267

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bej S, Basak J (2014) MicroRNAs: the potential biomarkers in plant stress response. Amer J Plant Sci 5:748–759

    Article  CAS  Google Scholar 

  • Bernacchia G, Furini A (2004) Biochemical and molecular responses to water stress in resurrection plants. Physiol Plant 121:175–181

    Article  CAS  PubMed  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132:21–32

    Article  CAS  Google Scholar 

  • Bray EA (2001) Plant response to water-deficit stress. Encyclopedia of Life Sciences. Wiley, Chichester

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Func Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chepsergon J, Mwamburi L, KipkemboiKassim M (2012) Mechanism of drought tolerance in plants using Trichoderma spp. Int J Sci Res 3:1592–1595

    Google Scholar 

  • Chernyad’ev II (2005) Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins: a review. Appl Biochem Microbiol 41:115–128

    Article  CAS  Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci U S A 111:6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Dai A (2012) Drought under global warming: a review. Wires Clim Change 2:45–65

    Article  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of MicroRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Du W, Yu D, Fu S (2009) Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J Integr Plant Biol 51:868–878

    Article  CAS  PubMed  Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Franco JA (2011) Root development under drought stress. Technol Knowl Transf e-Bull 2:1–3

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 51:26–33

    Article  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact 3:297–304

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hirt H, Shinozaki K (eds) (2004) Plant responses to abiotic stress. Springer, Berlin

    Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal trans-duction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Tiwary S, Gadre R (2010) Sorbitol-induced changes in various growth and biochemical Param-eters in maize. Plant Soil Environ 6:263–267

    Article  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jones XIM, Turner NC, Osmond CB (1981) Mechanisms of drought resistance. In: Paleg LPG, Aspmall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, Brisbane, pp 15–37

    Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Planta 57:718–724

    Article  CAS  Google Scholar 

  • Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J Anim Plant Sci 8:1051–1060

    Google Scholar 

  • Khan MA, Iqbal M, Jameel M, Nazeer W, Shakir S, Aslam MT, Iqbal B (2011) Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). Afr J Biotechnol 10:11340–11344

    Article  Google Scholar 

  • Khan MA, Iqbal M, Akram M, Ahmad M, Hassan MW, Jameel M (2013) Recent advances in molecular tool development for drought tolerance breeding in cereal crops: a review. Zemdirbyste 100:325–334

    Article  Google Scholar 

  • Kheradmand MA, Shahmoradzadeh Fahraji S, Fatahi E, Raoofi MM (2014) Effect of water stress on oil yield and some characteristics of Brassica napus. Int Res J Appl Basic Sci 8:1447–1453

    Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    Article  CAS  Google Scholar 

  • Labudda M, SafiulAzam FM (2014) Glutathione-dependent responses of plants to drought: a review. Acta Soc Bot Pol 83:3–12

    Article  CAS  Google Scholar 

  • Lee HY, Byeon Y, Tan D-X, Reiter RJ, Back K (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58:291–299

    Article  CAS  PubMed  Google Scholar 

  • Li F, Lei HJ, Zhao XJ, Tian RR, Li TH (2011) Characterization of three sorbitol transporter genes in micro-propagated apple plants grown under drought stress. Plant Mol Biol Rep 30:123–130

    Article  CAS  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) (2006) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi E (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Amer J Chin Stud 4:580–585

    CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blazquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Singh VP (2011) Drought modeling—a review. J Hydrol 403:157–175

    Article  Google Scholar 

  • Mondal S, Bose B (2014) An impact of seed priming on disease resistance: a review. In: Kharwar (ed) Microbial diversity biotechnology food seconds. Springer, New York, pp 193–203

    Google Scholar 

  • Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Weir R (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Aust J Plant Physiol 8:93–105

    CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:1–8

    Article  Google Scholar 

  • Nezhadahmadi A, Hossain Prodhan Z, Faruq G (2013) Drought tolerance in wheat. Sci World J 2013:1–12

    Article  CAS  Google Scholar 

  • Nounjana N, Nghiab PT, Theerakulpisuta P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:1–7

    Article  Google Scholar 

  • Paparella S, Araujo SS, Rossi G et al (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of D1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes control levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    CAS  PubMed  Google Scholar 

  • Peng LX, Gu LK, Zheng CC, Li DQ, Shu HR (2006) Expression of MaMAPK gene in seedlings of Malus L. under water stress. Acta Biochim Biophys Sin Shanghai 38:281–286

    Article  CAS  PubMed  Google Scholar 

  • Rahdari P, Hoseini SM (2012) Drought stress: a review. Int J Agron Plant Prod 3:443–446

    Google Scholar 

  • Rana RM, Rehman SU, Ahmed J, Bilal M (2013) A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivumL.). Asian J Agric Biol 1:29–37

    Google Scholar 

  • Rangan P, Subramani R, Kumar R, Singh AK, Singh R (2014) Recent advances in polyamine metabolism and abiotic stress tolerance. Biomed Res Int 2014:1–9

    Article  CAS  Google Scholar 

  • Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz GA, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Rossato L, Laine P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52:1655–1663

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Salehi-lisar SY, Bakhshayeshan-Agdam H (2016) In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L-SP (eds) Drought stress in plants: causes, consequences, and tolerance, drought stress tolerance in plants, vol 1. Springer, New York

    Google Scholar 

  • Salehi-lisar SY, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes, effects and responses, water stress. In: Ismail Md. Mofizur Rahman (ed). InTech

    Google Scholar 

  • Sapeta H, Costa M, Lourenc T, Marocod J, Van der Linde P, Oliveiraa MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008a) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008b) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio Technol 14:407–426

    Article  CAS  Google Scholar 

  • Song XG, She XP, He JM, Huang C, Song TS (2006) Cytokinin-and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct Plant Biol 33:573–583

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  CAS  PubMed  Google Scholar 

  • Suarez Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tari I, Kiss G, Deér AK, Csiszár J, Erdei L, Gallé Á, Gémes K, Horváth F, Poór P, Szepesi Á, Simon LM (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant 54:677–683

    Article  CAS  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22

    Article  Google Scholar 

  • Trujillo LE, Sotolongo M, Menendez C, Ochogavia ME, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BPHJ, Vera P, Hernandez L (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49:512–525

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    CAS  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wu X, Li Z, Duan L, Zhang M (2012) Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul 31:113–123

    Article  CAS  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. Am J Plant Physiol 5:241–256

    Article  Google Scholar 

  • Xu Q, Burgess P, Huang B (2016) Stress-inhibition and gibberellin-mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion. Physiologia Planta 131:101

    CAS  Google Scholar 

  • Yu K, Wei J, Ma Q, Yu D, Li J (2009) Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla. J Plant Physiol 166:819–830

    Article  CAS  PubMed  Google Scholar 

  • Zare M, Azizi MH, Bazrafshan F (2011) Effect of drought stress on some agronomic traits in ten barley (Hordeum vulgare) cultivars. Tech J Eng Appl Sci 1:57–62

    Google Scholar 

  • Zhang S, Liu Y (2001) Activation of salicylic acid–induced protein kinase, a mitogen activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877–1889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Article  Google Scholar 

  • Zuo B, Zheng X, He P, Wang L, Lei Q, Feng C, Zhou J, Li Q, Han Z, Kong J (2014) Over expression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res 57:408–417

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Yahya Salehi-Lisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salehi-Lisar, S.Y., Bakhshayeshan-Agdam, H. (2020). Agronomic Crop Responses and Tolerance to Drought Stress. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_5

Download citation

Publish with us

Policies and ethics