Skip to main content

Arsenic Contamination in Major Food Crops: Issues and Mitigation in Indian Subcontinent Perspective

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Widespread chronic arsenic (As) poisoning is a global concern due to consumption of arsenic-contaminated drinking water. Arsenic contamination in groundwater through geological sources and anthropogenic activities has been detected in many countries like the United States, Argentina, Taiwan, China, Hungary, Vietnam, India, and Bangladesh. Serious health hazards and deaths for millions due to As poisoning have been reported by many workers. While As contamination in drinking water has attracted much attention, its contamination in food chain has become a menace, particularly in intensively cropped areas of Bengal delta basin (India and Bangladesh). Growing crops in arsenic-contaminated soils with groundwater irrigation is primarily responsible for As contamination in food crops. The uptake of arsenic depends on various factors like type of crop, crop-growing condition (aerobic or anaerobic), water requirement, etc. During the post-monsoon season, crops like wheat, potato, winter vegetables as pea or French bean, and summer crops thrive more on groundwater-supported irrigation, making them vulnerable to arsenic contamination. Tolerance level of crops therefore becomes an important yardstick in mitigating arsenic stress along with interventions in water management, cultural practices, soil amendments, and fertilization with use of organics. Understanding the nature of arsenic contamination and its uptake helps in formulating appropriate strategies to ameliorate the negative impacts of As-stress limiting crop productivity and subsequent health hazards. This chapter would be handy to the students, agricultural researchers, and policymakers to acquaint themselves with the issue toward research and development programs to alleviate As-stress in major food crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMF:

arbuscular mycorrizal fungi

AOB:

As(III)-oxidizing bacteria

APX:

ascorbate peroxidase

As:

Arsenic

As2S2:

orpiment

As2S2:

realgar

ASC:

ascorbic acid

AsIII:

arsenite

AsV:

arsenate

CAT:

catalase

CPE:

cumulative pan evaporation

DAT:

days after transplanting

DMA:

dimethylarsinic acid

EDI:

estimated daily intake

EDTA:

ethylenediaminetetraacetic acid

EFY:

elephant foot yam

ETc:

crop evapotranspiration

FCT:

flue cured tobacco

FeAsS:

Arsenopyrite

FeOB:

Fe(III)-oxidizing bacteria

FeRB:

Fe(III)-reducing bacteria

FYM:

farm yard manure

GPX:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione-S-transferase

IW:

irrigation water

MAC:

maximum acceptable concentration

MDA:

malondialdehyde

MIPs:

major intrinsic proteins

MMA:

monomethylarsonic acid

MT:

metallothioneins

NIPs:

nodulin 26-like intrinsic proteins

PC:

phytochelatin

Pht1:

Phosphate transporter 1

SOD:

superoxide dismutase

STW:

shallow tube well

TF:

translocation factor

References

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S–1538S

    Article  CAS  PubMed  Google Scholar 

  • Acharya SK (1997) Arsenic in groundwater-geological overview. Consultation on arsenic in drinking water and resulting arsenic toxicity in India and Bangladesh. World Health Organisation, New Delhi

    Google Scholar 

  • Agropedia (2010) Water requirement of different crops. I:\irrigation\Water Requirement of Different Crops_agropedia.html. Acessed 27 Jul 2018

    Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJ (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Matsumoto S (2011) Effects of arsenic compound amendment on arsenic speciation in rice grain. Environ Sci Technol 45:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W (1967) The oxidizing activity of roots in waterlogged soils. Physiol Plant 20:920–926. https://doi.org/10.1111/j.1399-3054.1967.tb08379.x

    Article  CAS  Google Scholar 

  • Azam SM, Sarker TC, Naz S (2016) Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: a review. Toxicol Mech Methods 26:565–579

    Article  PubMed  CAS  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    Article  CAS  Google Scholar 

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110:689–694. https://doi.org/10.1289/ehp.02110s5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890

    Article  CAS  PubMed  Google Scholar 

  • Brammer H (2009) Mitigation of arsenic contamination in irrigated paddy soils in South and South-east Asia. Environ Int 35:856–863

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, Delaune RD, Gambrell RP, Patrick WH Jr (1998) The influence of arsenic chemical form and concentration on Spartina putens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  • Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbial 8:753–768

    Article  CAS  Google Scholar 

  • Chaudhuri A (2004) Dealing with arsenic contamination in Bangladesh. MIT Undergrad. Res J 11:25–30

    Google Scholar 

  • Chou ML, Jean JS, Yang CM, Hseu ZY, Chen YH, Wang HL, Das S, Chou LS (2016) Inhibition of ethylenediaminetetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) on arsenic uptake by vegetables in arsenic-rich agricultural soil. J Geochem Explor 163:19–27

    Article  CAS  Google Scholar 

  • Ci XK, Liu HL, Hao YB, Zhang JW, Peng LI, Dong ST (2012) Arsenic distribution, species, and its effect on maize growth treated with arsenate. J Integr Agric 11:416–423

    Article  CAS  Google Scholar 

  • Codling EE, Chaney RL, Green CE (2016) Accumulation of lead and arsenic by potato grown on lead–arsenate-contaminated orchard soils. Commun Soil Sci Plant Anal 47:799–807

    Article  CAS  Google Scholar 

  • Das Roy DP (2017) Effect of irrigation and mulching on strawberry in arsenic affected area. Thesis. SAS-BFIT Group of Institution, Dehradun

    Google Scholar 

  • Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D (1995) Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Analyst 120:917–924

    Article  CAS  PubMed  Google Scholar 

  • Das S, Chou ML, Jean JS, Liu CC, Yang HJ (2016) Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Sci Total Environ 542:642–652

    Article  CAS  PubMed  Google Scholar 

  • Davis RD, Beckett PH, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 49:395–408

    Article  CAS  Google Scholar 

  • Delgado A, Go’mez JA (2016) The soil physical, chemical and biological properties. In: Villalobos FJ, Fereres E (eds) Principles of agronomy for sustainable agriculture. Springer, Cham, pp 15–26

    Chapter  Google Scholar 

  • Deuel LE, Swoboda AR (1972) Arsenic toxicity to cotton and soybeans. J Environ Qual 1:317–320

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S et al (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96. https://doi.org/10.1016/j.plaphy.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2011) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  PubMed  CAS  Google Scholar 

  • European Commission (2015) Commission regulation (EU) 2015/1006 of 25 June 2015 amending regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Off J Eur Union 161:1993–1995

    Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KH, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Farrow EM, Wang J, Burken JG, Shi H, Yan W, Yang J, Hua B, Deng B (2015) Reducing arsenic accumulation in rice grain through iron oxide amendment. Ecotoxicol Ennviron Saf 118:55–61

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soilrhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278. https://doi.org/10.1016/S0168-1656(02)00218-3

    Article  CAS  PubMed  Google Scholar 

  • Geng CN, Zhu YG, Liu WJ, Smith SE (2005) Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquat Bot 83:321–331. https://doi.org/10.1016/j.aquabot.2005.07.003

    Article  CAS  Google Scholar 

  • Ghosh AK, Bhattacharyya P (2004) Arsenate sorption by reduced and reoxidised rice soils under the influence of organic matter amendments. Environ Geol 45:1010–1016

    Article  CAS  Google Scholar 

  • Grassi C, Bouman BA, Castañeda AR, Manzelli M, Vecchio V (2009) Aerobic rice: crop performance and water use efficiency. J agric environ int dev 103:259–270

    Google Scholar 

  • Gupta M, Khan E (2015) Mechanism of arsenic toxicity and tolerance in plants: role of silicon and Signalling molecules. In: Tripathi BN, Muller M (eds) Stress responses in plants. Springer, Cham, pp 143–157

    Chapter  Google Scholar 

  • Han D, Xiong S, Tu S, Liu J, Chen C (2015) Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotianatabacum L. Environ Exp Bot 117:12–19

    Article  CAS  Google Scholar 

  • Heikens (2006) Arsenic contamination of irrigation water, soil and crops in Bangladesh: risk implications for sustainable agriculture and food safety in Asia. RAP Publication (FAO)

    Google Scholar 

  • Honma T, Ohba H, Kaneko A, Nakamura K, Makino T, Katou H (2016) Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L. cv. Koshihikari) under different water management practices. Soil Sci Plant Nutr 62:349–356

    Article  CAS  Google Scholar 

  • Hossain MB (2005) Arsenic distribution in soil and water of a STW command area. In: Behavior of arsenic in aquifers, soils and plants (conference proceedings), Dhaka

    Google Scholar 

  • Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176. https://doi.org/10.1007/s11104-008-9798-7

    Article  CAS  Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)- induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393. https://doi.org/10.1016/j.envpol.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Huang J, Ouyang Y, Wu L, Song J, Wang S, Li Z, Han C, Zhou L, Huang Y, Luo Y (2013) Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ Geochem Health 35:767–778

    Article  CAS  PubMed  Google Scholar 

  • Hua B, Yan W, Wang J, Deng B, Yang J (2011) Arsenic accumulation in rice grains: effects of cultivars and water management practices. Environ Eng Sci 28:591–596

    Article  CAS  Google Scholar 

  • Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 1848:2–25. https://doi.org/10.1007/s11270-013-1848-y

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanism of action. Toxicol Lett 133:1–16

    Article  CAS  PubMed  Google Scholar 

  • Huq SMI, Joardar JC (2008) Effect of balanced fertilization on arsenic and other heavy metals uptake in rice and other crops. Bangladesh J Agr Environ 4:177–191

    Google Scholar 

  • Jahiruddin M, Islam MA, Islam MR, Islam S (2004) Effects of arsenic contamination on rice crop. Environ Forensic 1:204–210

    Google Scholar 

  • Jones FT (2007) A broad view of arsenic. Poult Sci 86:2–14

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Adriano DC (1995) Trace metals. In: Rechcigl JE (ed) Soil amendments and environmental quality. CRC press, Boca Raton, pp 139–167

    Google Scholar 

  • Khan MA, Islam MR, Panaullah GM, Duxbury JM, Jahiruddin M, Loeppert RH (2009) Fate of irrigation-water arsenic in rice soils of Bangladesh. Plant Soil 322:263–277

    Article  CAS  Google Scholar 

  • Kirk GJD, Van Du LE (1997) Changes in rice root architecture, porosity and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200. https://doi.org/10.1046/j.1469-8137.1997.00640.x

    Article  CAS  Google Scholar 

  • Kundu R, Pal S (2012) Arsenic accumulation in sesame (Sesamum indicum) cultivars under deltaic Bengal conditions. Crop Res 43:42–46

    Google Scholar 

  • Kundu R, Bandopadhyay P, Pal S, Majumder A, Mondal S (2012a) Screening of popular rice cultivars towards arsenic contanmination in intensively cultivated soils of West Bangal. Agric Sci Digest 32:247–250

    CAS  Google Scholar 

  • Kundu R, Bhattacharyya K, Majumder A, Pal S (2012b) Response of wheat cultivars to arsenic contamination in polluted soils of West Bengal, India. Cereal Res Commun 41:66–77

    Article  CAS  Google Scholar 

  • Kundu R, Majumder A, Pal S (2012c) Evaluation of potato cultivars against arsenic accumulation under an arsenic contaminated zone of Eastern India. Potato J 39:62–68

    Google Scholar 

  • Lawgali YF, Meharg AA (2011) Levels of arsenic and other traceelementsin Southern Libyanagriculturalirrigatedsoilandnon-irrigated soil projects. Water Qual Expo Health 3:79–90

    Article  CAS  Google Scholar 

  • Lee CH, Wu CH, Syu CH, Jiang PY, Huang CC, Lee DY (2016) Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270:60–67. https://doi.org/10.1016/j.geoderma.2016.01.003

    Article  CAS  Google Scholar 

  • Li RY, Stroud JL, Ma JF, Mcgrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Ding RX (2002) Influence of silicon on micro distribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China (Series C) 45:298–308

    Article  CAS  Google Scholar 

  • Lin YF, Walmsley A, Rosen B (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A 103(42):15617–15622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA (2005) Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 277:127–138. https://doi.org/10.1007/s11104-005-6453-4

    Article  CAS  Google Scholar 

  • Liu C, YuHY LC, Li F, XuX WQ (2015) Arsenic availability in rice froma mining area: is amorphous iron oxide-bound arsenic a source or sink? Environ Pollut 199:95–101. https://doi.org/10.1016/j.envpol.2015.01.025

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datonoff L, Korndorfer G, Synder G (eds) Silicon in agriculture. Elsevier Science, New York, pp 17–39

    Chapter  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Mallik S, Sinam G, Sinha S (2011) Study on arsenate tolerant and sensitive cultivars of Zea mays L.: differential detoxification mechanism and effect on nutrients status. Ecotoxicol Environ Saf 74:1316–1324

    Article  CAS  Google Scholar 

  • Mandal BK, Chowdhury TR, Samanta G, Basu GK, Chowdhury PP, Chanda CR, Lodh D, Karan NK, Dhara RK, Tamili DK, Das D, Saha KC, Chakraborti D (1996) Arsenic in groundwater in seven districts of West Bengal, India – the biggest arsenic calamity in the world. Curr Sci 70:976–986

    CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick JWH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 39:175–183

    Article  Google Scholar 

  • Markley CT, Herbert BE (2009) Arsenic risk assessment: the importance of speciation in different hydrologic systems. Water Air Soil Pollut 204:385–398

    Article  CAS  Google Scholar 

  • Matera V, LeHecho I (2001) Arsenic behavior in contaminated soils: mobility and speciation. In: Selim HM, Sparks DL (eds) Heavy metals release in soils. CRC Press, Boca Raton, pp 207–235

    Google Scholar 

  • Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015a) Reduction of the risk of arsenic accumulation in rice by the water management and material application in relation to phosphate status. J Plant Interact 10:65–74

    Article  CAS  Google Scholar 

  • Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015b) Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena 135:328–335

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Mishra S, Wellenreuther G, Mattusch J, Stärk HJ, Küpper H (2013) Speciation and distribution of arsenic in the non-hyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408. https://doi.org/10.1104/pp.113.224303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra AK, Bose BK, Kabir H, Das BK, Hussain M (2002) Arsenic related health problems among hospital patients in southern Bangladesh. J Health Popul Nutr 20:198–204

    PubMed  Google Scholar 

  • Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017) Arsenic accumulation in Rice and probable mitigation approaches: a review. Agronomy 7:67

    Article  CAS  Google Scholar 

  • Mondal (2010) Studies on management options to mitigate arsenic contamination in crops of prevalent systems of deltaic Bengal. Ph. D. thesis, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal

    Google Scholar 

  • Mondal S, Bandopadhyay P (2014) An irrigation and nutrient management model to reduce arsenic contamination in potato (Solanum tuberosum). In: Jha P (ed) Biodiversity, conservation and sustainable development: issues and approaches, vol 1. New Academic Publishers, New Delhi, pp 92–100

    Google Scholar 

  • Mondal S, Bandopadhyay P, Pal S (2012a) Performance of green gram and dry season rice in arsenic uptake under different management options in West Bengal. Oryza 49:112–116

    Google Scholar 

  • Mondal S, Bandopadhyay P, Kundu R, Pal S (2012b) Arsenic accumulation in elephant foot yam (Amorphophallus paeniifolius Dennst. Nicolson) in Deltaic West Bengal: effect of irrigation sources and nutrient management. J root crops 38:46–50

    Google Scholar 

  • Mondal S, Bandopadhyay P, Kundu R (2015) Effect of irrigation sources and nutrient management on arsenic accumulation in vegetable pea (Pisum Sativum L.) in deltaic West Bengal, India. Legume Res 38:635–638

    Google Scholar 

  • Mondal S, Bandopadhyay P, Dutta P (2018) Arsenic contamination in cropping systems under varying irrigation sources in the deltaic plain of India. Arch Agron Soil Sci 25:1–9

    Google Scholar 

  • Moreno-Jiménez E, Meharg AA, Smolders E, Manzano R, Becerra D, Sanchez-Llerena J, Albarran A, Lopez-Pinero A (2014) Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci Total Environ 485-486:468–473. https://doi.org/10.1016/j.scitotenv.2014.03.106

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxic Environ Saf 152:67–77

    Article  CAS  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  • Mukhopadhyay D (2002) A study on arsenic mobilization, retention and interactions with organics in soils. Ph. D. thesis, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal

    Google Scholar 

  • Mukhopadhyay D, Sanyal SK (2000) Effect of phosphate, arsenic and farmyard manure on the changes of the extractable arsenic in some soils of West Bengal and reflection thereof on crop uptake. Proceedings of National Seminar on Developments in Soil Science – 2000, Indian Soc Soil Sci, Nagpur, December 28–31, 2000

    Google Scholar 

  • Mukhopadhyay D, Mani PK, Sanyal SK (2002) Effect of phosphorus, arsenic and farmyard manure on arsenic availability in some soils of West Bengal. J Indian Soc Soil Sci 50:56–61

    CAS  Google Scholar 

  • Muñoz O, Diaz OP, Leyton I, Nuñez N, Devesa V, Súñer MA, Vélez D, Montoro R (2002) Vegetables collected in the cultivated Andean area of northern Chile: total and inorganic arsenic contents in raw vegetables. J Agric Food Chem 50:642–647

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L et al (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210. https://doi.org/10.1016/j.plaphy.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  • Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28:145–154. https://doi.org/10.1016/j.apgeochem.2012.10.011

    Article  CAS  Google Scholar 

  • Ning RY (2002) Arsenic anglad by reverse osmosis. Desalination 143:237–241

    Article  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276. https://doi.org/10.1093/jxb/ern097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Islam MR, Deacon CM, Zhao FJ, Stroud JL, McGrath SP, Islam S, Jahiruddin M, Feldmann J, Price AH, Meharg AA (2009) Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ Sci Technol 43:6070–6075

    Article  CAS  PubMed  Google Scholar 

  • Onken BM, Hossner LR (1995) Plant uptake and determination of arsenic species in soil solution under flooded conditions. J Environ Qual 24:373–381

    Article  CAS  Google Scholar 

  • Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot 69:167–174

    Article  CAS  Google Scholar 

  • Pearce F (2001) Bangladesh’s arsenic poisoning: who is to blame? http://unesco.org/courier/2001_01/uk/plant.htm

  • Penido ES, Bennett AJ, Hanson TE, Seyfferth AL (2016) Biogeochemical impacts of silicon-rich rice residue incorporation into flooded soils: implications for rice nutrition and cycling of arsenic. Plant Soil 399:75–87

    Article  CAS  Google Scholar 

  • Peryea FJ (1991) Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci Soc Am J 55:1301. https://doi.org/10.2136/sssaj-1991.03615995005500050018x

    Article  CAS  Google Scholar 

  • Pigna M, Cozzolino V, Giandonato Caporale A, Mora ML, Di Meo V, Jara AA, Violante A (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10:428–442

    Article  Google Scholar 

  • Praveen A, Pandey C, Khan E, Panthri M, Gupta M (2017) Silicon mediated genotoxic alterations in Brassica juncea under arsenic stress: comparative study of biochemical and molecular markers. Pedosphere

    Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220

    Article  PubMed  CAS  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenicphytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134(3):1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahaman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC, Roy S, Das R, Palit SK, Quamruzaman Q, Chakraborti D (2001) Chronic arsenic toxicity in Bangladesh and West Bengal, India – a review and commentary. Clin Toxicol:683–700

    Google Scholar 

  • Rahman MA, Hasegawa H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ 409:4645–4655. https://doi.org/10.1016/j.scitotenv.2011.07.068

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MAM, Tasmin A (2007a) Arsenic accumulation in rice (Oryzasativa L.) varieties of Bangladesh: a glass house study. Water Air Soil Pollut 185:53–61

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MM, Tasmen A (2007b) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  • Rahman MA, Maki TK, Kadohashi (2011) Transport of DMAA and MMAA into rice (Oryzasaliva L.) roots. Environ Exp Bot 72:41–46

    Article  CAS  Google Scholar 

  • Rauf MA, Hakim MA, Hanafi MM, Islam MM, Rahman GKMM, Panaullah GM (2011) Bioaccumulation of arsenic (As) and phosphorous by transplanting Aman rice in arsenic-contaminated clay soils. Aust J Crop Sci 5:1678–1684

    CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Sanyal SK (2005) Arsenic contamination in agriculture: a threat to water-soil-crop-animal-human continuum. Presidential Address, Section of Agriculture & Forestry Sciences, 92nd Session of the Indian Science Congress Association (ISCA), Ahmedabad, January 3 – 7, 2005; The Indian Science Congress Association, Kolkata

    Google Scholar 

  • Sanyal SK, Dhillon KS (2005) Arsenic and selenium dynamics in water-soil-plant system: a threat to environmental quality. Invited Lead lecture. In: Proceedings of the international conference on soil, water and environmental quality: issues and strategies, held in New Delhi, India during January 28 to February 1, 2005 (in pres)

    Google Scholar 

  • Sanyal SK, Nasar SKT (2002) Arsenic contamination of groundwater in West Bengal (India): build-up in soil-crop systems. In: Analysis and practice in water resources engineering for disaster mitigation. New Age International (P) Limited, Publishers, New Delhi, pp 216–222

    Google Scholar 

  • Sarkar S (2001) Effect of water stress on growth, productivity and water expense efficiency of summer rice. Indian J Agric Sci 71:153–158

    Google Scholar 

  • Sarkar S, Basu B, Kundu CK, Patra PK (2012) Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India. Agric Ecosyst Environ 146:147–152

    Article  CAS  Google Scholar 

  • Seyfferth AL, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol 46:13176–13183

    Article  CAS  PubMed  Google Scholar 

  • Seyfferth AL, Morris AH, Gill R, Kearns KA, Mann JN, Paukett M, Leskanic C (2016) Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain. J Agric Food Chem 64:3760–3766

    Article  CAS  PubMed  Google Scholar 

  • Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil. Geoderma 137:504–510. https://doi.org/10.1016/j.geoderma.2006.10.012

    Article  CAS  Google Scholar 

  • Sinha B, Bhattacharyya K (2015) Arsenic toxicity in rice with special reference to speciation in Indian grain and its implication on human health. J Sci Food Agric 95:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PG, Koch I, Reimer KJ (2008) Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Sci Total Environ 390:188–197

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanu A, Daga L, Orlandoni AM, Sanna G (2012) The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ Sci Technol 46:8333–8340

    Article  CAS  PubMed  Google Scholar 

  • SPS (2013–2014) Sanitary and Phytosanitary (SPS) – Pakistan. Government of Pakistan Participates in Establishing Codex Standard for Arsenic in Rice. http://trtapakistan.org/wp-content/uploads/2014/06/SPS-Newsletter-Issue-11-12_IG.pdf. Accessed 18 Jun 2018

  • Srivastava S, D’Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43:6308–6313. https://doi.org/10.1021/es900304x

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Akkarakaran JJ, Sounderajan S, Shrivastava M, Suprasanna P (2015) Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: impact on the expression of transporters and thiol metabolism. Geoderma 270:33. https://doi.org/10.1016/j.geoderma.2015.11.006

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Talukder AS (2005) Effect of water management and phosphorus rates on the growth of rice in a high-arsenic soil–water system. In: Behaviour of arsenic in aquifers, soils and plants: implications for management. Arsenic symposium, Dhaka, CIMMYT

    Google Scholar 

  • Talukder ASMHM, Meisner CA, Sarkar MAR, Islam MS (2011) Effect of water management, tillage options and phosphorus status on arsenic uptake in rice. Ecotoxicol Environ Saf 74:834–839

    Article  CAS  PubMed  Google Scholar 

  • Tiberg C, Kumpiene J, Gustafsson JP, Marsz A, Persson I, Mench M, Kleja DB (2016) Immobilization of Cu and As in two contaminated soils with zero-valent iron–long-term performance and mechanisms. Appl Geochem 67:144–152

    Article  CAS  Google Scholar 

  • Tripathi R, Srivastava S, Mishra S, Singh N, Tuli R, Gupta D, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotech 25(4):158–165

    Article  CAS  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Kumar A, Mishra A, Chauhan PS, Norton GJ, Nautiyal CS (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789–1800. https://doi.org/10.1039/C4MT00111G

    Article  CAS  PubMed  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  PubMed  Google Scholar 

  • Wilson R (2002) Summary of acute and chronic effects of arsenic and the extent of the world arsenic catastrophe. http://phys4.harvard.edu/~wilson/arsenic/arsenic_project_introduction.html

  • Wolterbeek HT, Van der Meer AJ (2002) Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L.: radiotracer experiments with 76As, 109,115 Cd, 64Cu and 65, 69mZn. Sci Total Environ 287:13–30

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Chen C, Wang P, Kretzschmar R, Zhao FJ (2017) Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ Pollut 23:37–47

    Article  CAS  Google Scholar 

  • Yoon Y, Lee WM, An YJ (2015) Phytotoxicity of arsenic compounds on crop plant seedlings. Environ Sci Pollut Res 22:11047. https://doi.org/10.1007/s11356-015-4317-x

    Article  CAS  Google Scholar 

  • Zhao F, Ma J, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath SP, Zhou J, Zhu YG (2013) Arsenic methylation in soils and its relationship with microbial arsM abundance anddiversity and As speciation in rice. Environ Sci Technol 47:7147–7154

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP (2014) Earth abides arsenic biotransformation. Annu Rev Earth Planet Sci 42:443–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Dutta, P., Bandopadhyay, P., Maji, S. (2020). Arsenic Contamination in Major Food Crops: Issues and Mitigation in Indian Subcontinent Perspective. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_13

Download citation

Publish with us

Policies and ethics