Skip to main content

Advertisement

Log in

Arsenic Accumulation in Rice (Oryza sativa L.) Varieties of Bangladesh: A Glass House Study

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A glass house study was conducted to investigate the accumulation of arsenic in tissues of five widely cultivated rice (Oryza sativa L.) varieties of Bangladesh namely BRRI dhan 28, BRRI dhan 29, BRRI dhan 35, BRRI dhan 36, BRRI hybrid dhan 1. Arsenic concentrations were measured in straw, husk and brown and polish rice grain to see the differential accumulation of arsenic among the rice varieties. The results showed that the concentrations of arsenic in different parts of all rice varieties increased significantly (p < 0.05) with the increase of its concentrations in soil. The rice varieties did not showed significant differences in arsenic accumulation in straw, husk, brown and polish grain when the concentrations of arsenic in soil was low. However, at higher concentrations of arsenic in soil, different rice varieties showed significant differences in the accumulations of arsenic in straw, husk and grain. Significantly higher concentrations of arsenic in straw and husk of rice were observed in BRRI hybrid dhan 1 compared to those of other verities. The BRRI dhan 28 and 35 concentrated significantly higher amount of arsenic in brown and polish rice grain compared to those of other rice varieties. The results imply that arsenic translocation from root to shoot (straw) and husk was higher in hybrid variety compared to those of non-hybrid varieties. Arsenic concentrations in brown and polish rice grain of five rice varieties were found to follow the trend: BRRI dhan 28 > BRRI dhan 35 > BRRI dhan 36 > BRRI dhan 29 > BRRI hybrid dhan 1. The order of arsenic contents in tissues of rice was: straw > husk > brown rice grain > polish rice grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968.

    Article  CAS  Google Scholar 

  • Alam, M. G. M., Allinson, G., Stagnitti, F., Tanaka, A., & Westbrooke, M. (2002). Arsenic contamination in Bangladesh groundwater: A major environmental and social disaster. International Journal of Environmental Health Research, 12(3), 235–253.

    Article  CAS  Google Scholar 

  • Bangladesh Bureau of Statistics (BBS) (1996). In Statistical year book of Bangladesh (p. 10). People’s Republic of Bangladesh: Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning.

  • Chakraborti, A. K., & Das, D.K. (1997). Arsenic pollution and its environmental significance. Interacad, 1, 262–276.

    Google Scholar 

  • Chakraborti, D., Rahman, M. M., Paul, K., Chowdhury, U. K., Sengupta, M. K., Lodh, D., et al. (2002). Arsenic calamity in the Indian subcontinent – What lessons have been learned? Talanta, 58, 3–22.

    Article  CAS  Google Scholar 

  • Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.

    CAS  Google Scholar 

  • Dey, M. M., Miah, N. M. I., Mustafi, B. A. A., & Hussain, M. (1996). In R. E. Evenson, R. W. Herdt, & M. Hussain (Eds.), Rice research in Asia: Progress and priorities (pp. 179–191). Wallington, UK and Manila, Philippines: CABI-IRRI.

    Google Scholar 

  • Fazal, M. A., Kawachi, T., & Ichio, E. (2001). Validity of the latest research findings on causes of groundwater arsenic contamination in Bangladesh. Water International, 26(2), 380–389.

    CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Hopenhayn, C. (2006). Arsenic in drinking water: Impact on human health. Elements, 2, 103–107.

    CAS  Google Scholar 

  • Imamul Huq, S. M., Rahman, A., Sultana, S., & Naidu, R. (2003). Extent and severity of arsenic contamination in soils of Bangladesh. In M. F. Ahmed & Z. A. Ali (Eds.), Fate of arsenic in the environment (pp. 69–84). Dhaka, Bangladesh: BUET-UNU International Symposium.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace element in soil and plants (2nd ed.). London, UK: CRC.

    Google Scholar 

  • Marin, A. R., Masscheleyn, P. H., & Patrick, W. H. Jr. (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil, 139, 175–183

    Article  CAS  Google Scholar 

  • Marin, A. R., Pezeshki, S. R., Masscheleyn, P. H., & Choi, H. S. (1993). Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. Journal of Plant Nutrition, 16, 865–880.

    Article  CAS  Google Scholar 

  • McLellan, F. (2002). Arsenic contamination affects millions in Bangladesh. The Lancet, 359, 1127.

    Article  Google Scholar 

  • Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science & Technology, 37, 229–234.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Islam, M. N., Miah, M. A. M., & Tasmin, A. (2007a). Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere, 67, 1072–1079.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Miah, M. A. M., & Tasmin, A. (2007b). Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety. (in press). doi:10.1016/j.ecoenv.2007.01.005.

  • Schoof, R. A., Yost, L. J., Eickhoff, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., et al. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37, 839–846.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., Rahman, M. (2000). Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 78(9), 1093–1103.

    CAS  Google Scholar 

  • Tsutsumi, S., Amagai, T., Kawaguchi, M., Ishizuka, S., & Matsumoto, Y. (1980). Effects of arsenic trioxide (As2O3) on the uptake of 3H-thymidine in lymphocytes of mice. Bulletin of Tokyo Dental College, 21(2), 63–70.

    Google Scholar 

  • Ullah, S. M. (1998). Arsenic contamination of groundwater and irrigated soils of Bangladesh. Paper presented at International Conference on Arsenic Pollution of Groundwater in Bangladesh: Causes, effects and remedies. Dhaka, Bangladesh: DCH.

  • van Geen, A., Zheng, Y., Versteeg, R., Stute, M., Horneman, A., Dhar, R., et al. (2003). Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resources Research, 39, 1140–1156.

    Article  CAS  Google Scholar 

  • Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118, 453–461.

    Article  CAS  Google Scholar 

  • Warren, G. P., Alloway B. J., Lepp, N. W., Singh, B., Bochereau F. J. M., & Penny, C. (2003). Field trials to asses the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Science of the Total Environment, 311, 19–33.

    Article  CAS  Google Scholar 

  • Welsch, E. P., Crock, J. G., & Sanzolone, R. (1990). Trace-level determination of arsenic and selenium using continuous-flow hydride generation atomic absorption spectrophotometry (HG-AAS). In B. F. Arbogast (Ed.), Quality assurance manual for the branch of geochemistry (pp. 38–45). Reston, VA: U.S. Geological Survey.

    Google Scholar 

  • Xie, Z. M., & Huang, C. Y. (1998). Control of arsenic toxicity in rice plants grown on arsenic-polluted paddy soil. Communications in Soil Science and Plant Analysis, 29, 2471–2477.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Bangladesh Rice Research Institute (BRRI) authority for their full cooperation and necessary facilities in conducting this experiment. The first author is thankful to the Ministry of Science, Information and Communication Technology, Government of the People’s Republic of Bangladesh, for awarding the MSICT fellowship for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azizur Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.A., Hasegawa, H., Rahman, M.M. et al. Arsenic Accumulation in Rice (Oryza sativa L.) Varieties of Bangladesh: A Glass House Study. Water Air Soil Pollut 185, 53–61 (2007). https://doi.org/10.1007/s11270-007-9425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9425-x

Keywords

Navigation