Skip to main content

Recent Advances in the Development of Coumarin Derivatives as Antifungal Agents

  • Chapter
  • First Online:
Recent Trends in Human and Animal Mycology

Abstract

Coumarin is a privileged scaffold found in numerous pharmaceutically important natural products and synthetic molecules. The compounds bearing coumarin moiety exhibit broad spectrum of biological properties such as antibacterial, antiviral, anticancerous, anti-inflammatory, antihyperglycemic, and antipyretic activities. Coumarins are also well-known for their antifungal properties. In recent past, several literature reports have been published which highlight the importance of coumarin motif in the area of antifungal drug development. The present contribution provides an overview of synthetic and natural coumarins which have demonstrated potent antifungal activity, reported during 1992–2017. Structure Activity Relationship (SAR) may help medicinal chemists in the rational design and synthesis of new compounds based on coumarin scaffold for the treatment of fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mora C, Tittensor DP, Adl S et al (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Science 336:647

    Article  CAS  PubMed  Google Scholar 

  3. Brown GD, Denning DW, Gow N et al (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13

    Article  CAS  PubMed  Google Scholar 

  4. Denning DW, Bromley MJ (2015) How to bloster the antifungal pipeline. Science 347:1414–1416

    Article  CAS  PubMed  Google Scholar 

  5. Cuenca-Estrella M, Bernal-Martinez L, Buitrago MJ et al (2008) Update on the epidemiology and diagnosis of invasive fungal infection. Int J Antimicrob Agents 32:S143–S147

    Article  CAS  PubMed  Google Scholar 

  6. Patterson TF (2005) Advances and challenges in management of invasive mycoses. Lancet 366:1013–1025

    Article  PubMed  Google Scholar 

  7. Rodloff C, Koch D, Schaumann R (2011) Epidemiology and antifungal resistance in invasive candidiasis. Eur J Med Res 16:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brandt ME, Park BJ (2013) Think fungus-prevention and control of fungal infections. Emerg Infect Dis 19:1688–1689

    Article  PubMed  PubMed Central  Google Scholar 

  9. Azie N, Neofytos D, Pfaller M et al (2012) The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis 73:293–300

    Article  PubMed  Google Scholar 

  10. Armstrong-James D, Meintjes G, Brown GD (2014) A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 22:120–127

    Article  CAS  PubMed  Google Scholar 

  11. Park BJ, Wannemuehler KA, Marston BJ et al (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530

    Google Scholar 

  12. Jarvis JN, Casazza JP, Stone HH et al (2013) The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J Infect Dis 207:1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–881

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Pauw BE, Picazo JJ (2008) Present situation in the treatment of invasive fungal infection. Int J Antimicrob Agents 32:S167–S171

    Article  CAS  PubMed  Google Scholar 

  15. Ellis M (2001) Invasive fungal infections: evolving challenges for diagnosis and therapeutics. Mol Immunol 38:947–957

    Article  Google Scholar 

  16. Lai CC, Tan CK, Huang YT et al (2008) Current challenges in the management of invasive fungal infections. J Infect Chemother 14:77–85

    Article  CAS  PubMed  Google Scholar 

  17. Chen SCA, Playford EG, Sorrell TC (2010) Antifungal therapy in invasive fungal infections. Curr Opin Pharmacol 10:522–530

    Article  CAS  PubMed  Google Scholar 

  18. Groll AH, De Lucca AJ, Walsh TW (1998) Emerging targets for the development of novel antifungal therapeutics. Trends Microbiol 6:117–124

    Article  CAS  PubMed  Google Scholar 

  19. Orme M, Sjöqvist F (2010) Clinical pharmacology in research, teaching and health care. Basic Clin Pharmacol Toxicol 107:531–559

    Article  CAS  PubMed  Google Scholar 

  20. Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance and disease. Microbiol Mol Biol Rev 75:213–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richardson M, Lass-Florl C (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 14:5–24

    Article  PubMed  Google Scholar 

  22. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    Article  CAS  PubMed  Google Scholar 

  23. Allen D, Wilson D, Drew R et al (2015) Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti-Infective Ther 13:787–798

    Google Scholar 

  24. Sanglard D (2002) Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5:379–385

    Article  CAS  PubMed  Google Scholar 

  25. Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4:a019703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pour M, Spulak M, Buchta V et al (2001) 3-Phenyl-5-acyloxymethyl-2H,5H-furan-2-ones: synthesis and biological activity of a novel group of potential antifungal drugs. J Med Chem 44:2701–2706

    Article  CAS  PubMed  Google Scholar 

  27. Dua R, Shrivastava S, Sonwane SK et al (2011) Pharmacological significance of synthetic heterocycles scaffold: a review. Adv Biol Res 5:120–144

    CAS  Google Scholar 

  28. Kathiravan MK, Salake AB, Chothe AS et al (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698

    Article  CAS  PubMed  Google Scholar 

  29. Hault JRS, Paya M (1996) Pharmacological and biochemical actions of simple coumarins: natural products and therapeutic potential. Gen Pharmacol 27:713–722

    Article  Google Scholar 

  30. Murray RDH (1995) Coumarins. Nat Prod Rep 12:477–505

    Article  CAS  Google Scholar 

  31. Garazd MM, Garadz YL, Khilya VP (2003) Neoflavones. 1. Natural distribution and spectral and biological properties. Chem Nat Compd 39:54–121

    Article  CAS  Google Scholar 

  32. Borges F, Roleira F, Milhazes N et al (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916

    Article  CAS  PubMed  Google Scholar 

  33. Riveiro ME, Kimpe ND, Moglioni A et al (2010) Coumarins: old compounds with novel promising therapeutic perspectives. Curr Med Chem 17:1325–1338

    Article  CAS  PubMed  Google Scholar 

  34. Kontogiorgis C, Detsi A, Hadjipavlou-Litina D (2012) Coumarin-based drugs: a patent review (2008 – present). Expert Opin Ther Pat 22:437–454

    Article  CAS  PubMed  Google Scholar 

  35. Barot KP, Jain SV, Kremer L et al (2015) Recent advances on therapeutic journey of coumarins: current status and perspectives. Med Chem Res 24:2771–2798

    Article  CAS  Google Scholar 

  36. Gaudino EC, Tagliapietra S, Martina K et al (2016) Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Adv 6:46394–46405

    Article  CAS  Google Scholar 

  37. Huang GJ, Deng JS, Liao JC et al (2012) Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory activity of imperatorin from Glehnia littoralis. J Agric Food Chem 60:1673–1681

    Article  CAS  PubMed  Google Scholar 

  38. Gomez-Outes A, Suárez-Gea ML, Calvo-Rojas G et al (2012) Discovery of anticoagulant drugs: a historical perspective. Curr Drug Discov Technol 9:83–104

    Article  CAS  PubMed  Google Scholar 

  39. Wang CM, Zhou W, Li CX et al (2009) Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. J Asian Nat Prod Res 11:783–791

    Article  CAS  PubMed  Google Scholar 

  40. Shin E, Choi KM, Yoo HS et al (2010) Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol Pharm Bull 33:1610–1614

    Article  CAS  PubMed  Google Scholar 

  41. Tinel M, Belghiti J, Descatoire V et al (1987) Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem Pharmacol 36:951–955

    Article  CAS  PubMed  Google Scholar 

  42. Whang WK, Park HS, Ham I et al (2005) Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp Mol Med 37:436–446

    Article  CAS  PubMed  Google Scholar 

  43. Carotti A, Carrieri A, Chimichi S et al (2002) Natural and synthetic geiparvarins are strong and selective. Bioorg Med Chem Lett 12:3551–3555

    Article  CAS  PubMed  Google Scholar 

  44. Newman RA, Chen W, Madden TL (1998) Pharmaceutical properties of related calanolide compounds with activity against human immunodeficiency virus. J Pharm Sci 87:1077–1080

    Article  CAS  PubMed  Google Scholar 

  45. Maxwell A (1997) DNA gyrase as a drug target. Trends Microbiol 5:102–109

    Article  CAS  PubMed  Google Scholar 

  46. Musa MA, Cooperwood JS, Khan MOF (2008) A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15:2664–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thakur A, Singla R, Jaitak V (2015) Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 101:476–495

    Article  CAS  PubMed  Google Scholar 

  48. Dandriyal J, Singla R, Kumar M et al (2016) Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur J Med Chem 119:141–168

    Article  CAS  PubMed  Google Scholar 

  49. Hassan MZ, Osman H, Ali MA et al (2016) Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 123:236–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keri RS, Sasidhar BS, Nagaraja BM et al (2015) Recent progress in the drug development of coumarin derivatives as potent anti tuberculosis agents. Eur J Med Chem 100:257–269

    Article  CAS  PubMed  Google Scholar 

  51. Hu YQ, Xu Z, Zhang S et al (2017) Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur J Med Chem 136:122–130

    Article  CAS  PubMed  Google Scholar 

  52. Grover J, Jachak SM (2015) Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv 5:38892–38905

    Article  CAS  Google Scholar 

  53. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE et al (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10:3813–3833

    Article  CAS  PubMed  Google Scholar 

  54. Al-Majedy YK, Kadhum AAH, Al-Amiery AA et al (2017) Coumarins: the antimicrobial agents. Sys Rev Pharm 8:62–70

    Article  CAS  Google Scholar 

  55. Patil PO, Bari SB, Firke SD et al (2013) A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer's disease. Bioorg Med Chem 21:2434–2450

    Article  CAS  PubMed  Google Scholar 

  56. Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer's disease. Bioorg Med Chem 20:1175–1180

    Article  CAS  PubMed  Google Scholar 

  57. de Souza LG, Renno MN, Figueroa-Villar JD (2016) Coumarins as cholinesterase inhibitors: a review. Chem Biol Interact 254:11–23

    Article  CAS  PubMed  Google Scholar 

  58. Kofinas C, Chinou I, Loukis A et al (1998) Flavonoids and bioactive coumarins of Tordylium apulum. Phytochemistry 48:637–641

    Article  CAS  Google Scholar 

  59. Oliva A, Meepagala KM, Wedge DE et al (2003) Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J Agric Food Chem 51:890–896

    Article  CAS  PubMed  Google Scholar 

  60. Carpinella MC, Ferrayoli CG, Palacios SM (2005) Antifungal synergistic effect of scopoletin, a hydroxyl coumarin isolated from Melia azedarach L. fruits. J Agric Food Chem 53:2922–2927

    Article  CAS  PubMed  Google Scholar 

  61. Stein AC, Alvarez S, Avancini C et al (2006) Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol 107:95–98

    Article  CAS  PubMed  Google Scholar 

  62. El-Seedi HR (2007) Antimicrobial arylcoumarins from Asphodelus microcarpus. J Nat Prod 70:118–120

    Article  CAS  PubMed  Google Scholar 

  63. Kurdelas RR, Lima B, Tapia A et al (2010) Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii Hook and Arn. (Asteraceae). Molecules 15:4898–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Céspedes CL, Avila JG, Martínez A et al (2006) Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem 54:3521–3527

    Article  CAS  PubMed  Google Scholar 

  65. Navarro-García VM, Rojas G, Avilés M et al (2011) In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand. Mycoses 54:e569–e571

    Article  PubMed  Google Scholar 

  66. Curir P, Galeotti F, Dolci M et al (2007) Pavietin, a coumarin from Aesculus pavia with antifungal activity. J Nat Prod 70:1668–1671

    Article  CAS  PubMed  Google Scholar 

  67. Kumar R, Saha A, Saha D (2012) A new antifungal coumarin from Clausena excavata. Fitoterapia 83:230–233

    Article  CAS  PubMed  Google Scholar 

  68. Montagner C, de Souza SM, Groposoa C et al (2008) Antifungal activity of coumarins. Z Naturforsch C 63:21–28

    Article  CAS  PubMed  Google Scholar 

  69. Sandjo LP, Foster AJ, Rheinheimer J et al (2012) Coumarin derivatives from Pedilanthus tithymaloides as inhibitors of conidial germination in Magnaportheoryzae. Tetrahedron Lett 53:2153–2156

    Article  CAS  Google Scholar 

  70. Marcondes HC, de Oliveira TT, Taylor JG et al (2015) Antifungal activity of coumarin mammeisin isolated from species of the Kielmeyera Genre (Clusiaceae or Guttiferae). J Chem Article ID 241243:1–4

    Google Scholar 

  71. Sribuhom T, Sriphana U, Thongsri Y et al (2015) Chemical constituents from the stems of Alyxia schlechteri. Phytochem Lett 11:80–84

    Article  CAS  Google Scholar 

  72. Ayine-Tora DM, Kingsford-Adaboh R, Asomaning WA et al (2016) Coumarin antifungal lead compounds from Millettia thonningii and their predicted mechanism of action. Molecules 21:1369–1382

    Article  CAS  PubMed Central  Google Scholar 

  73. Shi Y, Zhou CH (2011) Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 21:956–960

    Article  CAS  PubMed  Google Scholar 

  74. Al-Amiery AA, Kadhum AA, Mohamad AB (2012) Antifungal activities of new coumarins. Molecules 17:5713–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Panda SS, Malik R, Chand M et al (2012) Synthesis and antimicrobial activity of some new 4-triazolylmethoxy-2H-chromen-2-one derivatives. Med Chem Res 21:3750–3756

    Article  CAS  Google Scholar 

  76. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferreira SZ, Carneiro HC, Lara HA et al (2015) Synthesis of a new peptide–coumarin conjugate: a potential agent against cryptococcosis. ACS Med Chem Lett 6:271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shaikh MH, Subhedar DD, Khan FA et al (2016) 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chin Chem Lett 27:295–301

    Article  CAS  Google Scholar 

  79. Gilbert AM, Failli A, Shumsky J et al (2006) Pyrazolidine-3,5-diones and 5-hydroxy-1H-pyrazol-3(2H)-ones, inhibitors of UDP-N-acetylenolpyruvyl glucosamine reductase. J Med Chem 49:6027–6036

    Article  CAS  PubMed  Google Scholar 

  80. Magedov IV, Manpadi M, Slambrouck SV et al (2007) Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J Med Chem 50:5183–5192

    Article  CAS  PubMed  Google Scholar 

  81. Szabo G, Fischer J, Kis-Varga A et al (2008) New celecoxib derivatives as anti-inflammatory agents. J Med Chem 51:142–147

    Article  CAS  PubMed  Google Scholar 

  82. Sener A, Sener MK, Bildmci I et al (2002) Studies on the reactions of cyclic oxalyl compounds with hydrazines or hydrazones: synthesis and reactions of 4-benzoyl-1- (3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid. J Heterocyclic Chem 39:869–875

    Article  CAS  Google Scholar 

  83. Abdelhafez OM, Amin KM, Batran RZ et al (2010) Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg Med Chem 18:3371–3378

    Article  CAS  PubMed  Google Scholar 

  84. Renuka N, Kumar K (2013) Synthesis and biological evaluation of novel formyl-pyrazoles bearing coumarin moiety as potent antimicrobial and antioxidant agents. Bioorg Med Chem Lett 23:6406–6409

    Article  CAS  Google Scholar 

  85. Dongamanti A, Bommidi VL, Sidda R et al (2015) Microwave-assisted synthesis of some new coumarin–pyrazoline hybrids and their antimicrobial activity. J Serb Chem Soc 80:305–313

    Article  CAS  Google Scholar 

  86. Kashyap SJ, Garg VK, Sharma PK et al (2012) Thiazoles: having diverse biological activities. Med Chem Res 21:2123–2132

    Article  CAS  Google Scholar 

  87. Arshad A, Osman H, Bagley MC et al (2011) Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur J Med Chem 46:3788–3794

    Article  CAS  PubMed  Google Scholar 

  88. El-Dean AM, Zaki RM, Geies AA et al (2013) Synthesis and antimicrobial activity of new heterocyclic compounds containing thieno [3, 2-c] coumarin and pyrazolo [4, 3-c] coumarin frameworks. Russ J Bioorganic Chem 39:553–564

    Article  CAS  Google Scholar 

  89. Chiou BS, Shoen PE (2002) Effect of crosslinking on thermal and mechanical properties of polyurethanes. J Appl Polym Sci 83:212–223

    Article  CAS  Google Scholar 

  90. El-Wahab HA, El-Fattah MA, El-Khalik NA et al (2014) Synthesis and characterization of coumarin thiazole derivative 2-(2-amino-1, 3-thiazol-4-yl)-3H-benzo[f] chromen-3-one with anti-microbial activity and its potential application in antimicrobial polyurethane coating. Prog Org Coat 77:1506–1511

    Article  CAS  Google Scholar 

  91. Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:4–25

    Article  Google Scholar 

  92. Reddy VN, Yamini L, Rao YJ et al (2017) Synthesis of pyrazole-4-carbaldehyde derivatives for their antifungal activity. Med Chem Res 26:1664–1674

    Article  CAS  Google Scholar 

  93. Al-Tel TH, Al-Qawasmeh RA, Zaarour R (2011) Design, synthesis and in vitro antimicrobial evaluation of novel imidazo[1,2-a] pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur J Med Chem 46:1874–1881

    Article  CAS  PubMed  Google Scholar 

  94. Lad HB, Giri RR, Brahmbhatt DI (2013) An efficient synthesis of some new 3-bipyridinyl substituted coumarins as potent antimicrobial agents. Chin Chem Lett 24:227–229

    Article  CAS  Google Scholar 

  95. Chai X, Yu S, Wang X et al (2013) Synthesis and antifungal activity of novel 7-O-substituted pyridyl-4-methyl coumarin derivatives. Med Chem Res 22:4654–4662

    Article  CAS  Google Scholar 

  96. Kenchappa R, Bodke YD, Chandrashekar A et al (2017) Synthesis of some 2,6-bis(1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents. Arab J Chem 10:S1336–S1344

    Article  CAS  Google Scholar 

  97. Selvam TP, James CR, Dniandev PV et al (2012) A mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm 2:1–9

    Google Scholar 

  98. Jain KS, Chitre TS, Miniyar PB et al (2006) Biological and medicinal significance of pyrimidines. Curr Sci 90:793–803

    CAS  Google Scholar 

  99. Sharma V, Chitranshi N, Agarwal AK (2014) Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem 2014:1–31

    Google Scholar 

  100. Ghashang M, Mansoor SS, Aswin K (2014) Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno [2, 3-d] pyrimidinone derivatives and their antimicrobial activity. J Adv Res 5:209–218

    Article  CAS  PubMed  Google Scholar 

  101. Imran M, Khan SA (2015) Synthesis and antimicrobial activity of some 2-amino-4-(7-substituted/unsubstituted coumarin-3-yl)-6-(chlorosubstitutedphenyl) pyrimidines. Trop J Pharm Res 14:1265–1272

    Article  CAS  Google Scholar 

  102. Sarkanj B, Molnar M, Cacic M et al (2013) 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem 139:488–495

    Google Scholar 

  103. Čačić M, Pavić V, Molnar M et al (2014) Design and synthesis of some new 1, 3, 4-thiadiazines with coumarin moieties and their antioxidative and antifungal activity. Molecules 19:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patel D, Kumari P, Patel NB (2017) Synthesis and biological evaluation of coumarin based isoxazoles, pyrimidinthiones and pyrimidin-2-ones. Arab J Chem 10:S3990–S4001

    Article  CAS  Google Scholar 

  105. Rokosz LL, Huang CY, Reader JC et al (2005) Surfing the piperazine core of tricyclic farnesyltransferase inhibitors. Bioorg Med Chem Lett 15:5537–5543

    Article  CAS  PubMed  Google Scholar 

  106. Mandala D, Valeru A, Pochampalli J et al (2013) Synthesis, antimicrobial activity and molecular modeling of novel 4-(3-(4-benzylpiperazin-1-yl)propoxy)-7-methoxy-3-substituted phenyl-2H-chromen-2-one. Med Chem Res 22:5481–5489

    Article  CAS  Google Scholar 

  107. Ostrowska K, Grzeszczuk D, Maciejewska D et al (2016) Synthesis and biological screening of a new series of 5-[4-(4-aryl-1-piperazinyl) butoxy] coumarins. Monatsh Chem 147:1615–1627

    Article  CAS  Google Scholar 

  108. Berthon G (1995) Handbook of metal–ligand interactions in biological fluids, vol 1 and 2. Marcel-Dekker Inc, New York

    Google Scholar 

  109. Nagy L, Csintalan G, Kálmán E et al (2005) Applications of metal ions and their complexes in medicine. Acta Pharm Hung 73:221–236

    Google Scholar 

  110. Savić ND, Milivojevic DR, Glišić BĐ et al (2016) A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. RSC Adv 6:13193–13206

    Article  CAS  Google Scholar 

  111. Tweedy BG (1964) Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55:910–914

    Google Scholar 

  112. Ahmad S, Isab AA, Ali S et al (2006) Perspectives in bioinorganic chemistry of some metal based therapeutic agents. Polyhedron 25:1633–1645

    Article  CAS  Google Scholar 

  113. Grazul M, Budzisz E (2009) Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 253:2588–2598

    Article  CAS  Google Scholar 

  114. Kioseoglou E, Petanidis S, Gabriel C et al (2015) The chemistry and biology of vanadium compounds in cancer therapeutics. Coord Chem Rev 301–302:87–105

    Article  CAS  Google Scholar 

  115. Yang Y, Ouyang R, Xu L et al (2015) Review: bismuth complexes: synthesis and applications in biomedicine. J Coord Chem 68:379–397

    Article  CAS  Google Scholar 

  116. Ndagi U, Mhlongo N, Soliman ME (2017) Metal complexes in cancer therapy–an update from drug design perspective. Drug Des Devel Ther 11:599–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Creaven BS, Egan DA, Kavanagh K et al (2006) Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver (I) complexes. Inorg Chim Acta 359:3976–3984

    Article  CAS  Google Scholar 

  118. Creaven BS, Egan DA, Karcz D et al (2007) Synthesis, characterization and antimicrobial activity of copper (II) and manganese (II) complexes of coumarin-6, 7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6, 7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu (cdoa)(phen)2] · 8.8H2O and [Cu (4-Mecdoa)(phen)2] · 13H2O (phen=1, 10-phenanthroline). J Inorg Biochem 101:1108–1119

    Article  CAS  PubMed  Google Scholar 

  119. Creaven BS, Devereux M, Karcz D et al (2009) Copper (II) complexes of coumarin-derived Schiff bases and their anti-Candida activity. J Inorg Biochem 103:1196–1203

    Article  CAS  PubMed  Google Scholar 

  120. Mosa AI, Emara AAA, Yousef JM et al (2011) Novel transition metal complexes of 4-hydroxy-coumarin-3-thiocarbohydrazone: pharmacodynamic of Co(III) on rats and antimicrobial activity. Spectrochim Acta A 81:35–43

    Article  CAS  Google Scholar 

  121. Halli MB, Sumathi RB, Kinni M (2012) Synthesis, spectroscopic characterization and biological evaluation studies of Schiff’s base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes. Spectrochim Acta A 99:46–56

    Article  CAS  Google Scholar 

  122. Raj KM, Mruthyunjayaswamy BHM (2014) Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties. J Mol Struct 1074:572–582

    Article  CAS  Google Scholar 

  123. Karataş MO, Olgundeniz B, Günal S et al (2016) Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg Med Chem 24:643–650

    Article  CAS  PubMed  Google Scholar 

  124. Patil SA, Prabhakara CT, Halasangi BM et al (2015) DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co( II ), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach. Spectrochim Acta A 137:641–651

    Article  CAS  Google Scholar 

  125. Abou-hussein AA, Linert W (2015) Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand. Spectrochim Acta A 141:223–232

    Article  CAS  Google Scholar 

  126. Mujahid M, Trendafilova N, Arfa-Kia AF et al (2016) Novel silver (I) complexes of coumarin oxyacetate ligands and their phenanthroline adducts: biological activity, structural and spectroscopic characterisation. J Inorg Biochem 163:53–67

    Article  CAS  PubMed  Google Scholar 

  127. Vukovic N, Sukdolak S, Solujic S et al (2010) Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: synthesis and in vitro assessments. Food Chem 120:1011–1018

    Article  CAS  Google Scholar 

  128. Sandhya B, Giles D, Mathew V et al (2011) Synthesis, pharmacological evaluation and docking studies of coumarin derivatives. Eur J Med Chem 46:4696–4701

    Article  CAS  PubMed  Google Scholar 

  129. Damu GL, Cui SF, Peng XM et al (2014) Synthesis and bioactive evaluation of a novel series of coumarin azoles. Bioorg Med Chem Lett 24:3605–3608

    Article  CAS  PubMed  Google Scholar 

  130. Molnar M, Šarkanj B, Cacic M et al (2014) Antioxidant properties and growth-inhibitory activity of coumarin Schiff bases against common foodborne fungi. Der Pharma Chemia 6:313–320

    Google Scholar 

  131. Gupta S, Singh S, Kathuria A et al (2012) Ammonium derivatives of chromenones and quinolinones as lead antimicrobial agents. J Chem Sci 124:437–449

    Article  CAS  Google Scholar 

  132. Singh S, Gupta S, Singh B et al (2012) Proteomic characterization of Aspergillus fumigatus treated with an antifungal coumarins for identification of novel target molecules of key pathways. J Proteome Res 11:3259–3268

    Article  CAS  PubMed  Google Scholar 

  133. Singh S, Dabur R, Gatne MM et al (2014) In vivo efficacy of a synthetic coumarin derivative in a murine model of aspergillosis. PLoS One 9:e103039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nagamallu R, Srinivasan B, Ningappa MB et al (2016) Synthesis of novel coumarin appended bis (formylpyrazole) derivatives: studies on their antimicrobial and antioxidant activities. Bioorg Med Chem Lett 26:690–694

    Article  CAS  PubMed  Google Scholar 

  135. Yeagera AR, Finney NS (2004) Second-generation dimeric inhibitors of chitin synthase. Bioorg Med Chem 12:6451–6460

    Article  CAS  Google Scholar 

  136. Magellan H, Boccara M, Drujon T et al (2013) Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening. Bioorg Med Chem 21:4997–5003

    Article  CAS  PubMed  Google Scholar 

  137. Lenardon MD, Munr CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jackson KE, Pogula PK, Patterson SE (2013) Polyoxin and nikkomycin analogs: recent design and synthesis of novel peptidyl nucleosides. Heterocycl Commun 19:375–386

    Article  CAS  Google Scholar 

  139. Disney MD, Matray T, Gryaznov SM et al (2001) Binding enhancement by tertiary interactions and suicide inhibition of a Candida albicans group I intron by phosphoramidate and 2’-O-methyl hexanucleotides. Biochemistry 40:6520–6526

    Article  CAS  PubMed  Google Scholar 

  140. Subramanyam C, Ramana KV, Rasheed S et al (2013) Synthesis and biological activity of novel diphenyl N-substituted carbamimidoyl phosphoramidate derivatives. Phosphorus Sulfur Silicon 188:1228–1235

    Article  CAS  Google Scholar 

  141. Ji Q, Ge Z, Ge Z et al (2016) Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 108:166–176

    Article  CAS  PubMed  Google Scholar 

  142. Sahoo J, Kumar PS (2015) Biological evaluation and spectral characterization of 4-hydroxy coumarin analogues. J Taibah Univ Med Sci 10:306–319

    Google Scholar 

  143. Medimagh-Saidana S, Romdhane A, Daami-Remadi M et al (2015) Synthesis and antimicrobial activity of novel coumarin derivatives from 4-methylumbelliferone. Med Chem Res 24:3247–3257

    Article  CAS  Google Scholar 

  144. Yang G, Xu C, Zhao M et al (2016) Microwave assisted one-pot synthesis of novel trifluoromethyl coumarin thiosemicarbazones and their antifungal activities. Curr Microwave Chem 3:60–67

    Article  CAS  Google Scholar 

  145. Dongamanti A, Bommidi VL, Madderla S (2016) An efficient microwave-assisted Suzuki Cross-Coupling on coumarin derivatives in water and evaluation of antimicrobial activity. Lett Org Chem 13:76–84

    Google Scholar 

  146. Guerraa FQS, Araújob RSA, Sousaa JP et al (2017) A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp. Braz J Microbiol 311:1–7

    Google Scholar 

  147. Pang GX, Niu C, Mamat N et al (2017) Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria. Bioorg Med Chem Lett 27:2674–2677

    Article  CAS  PubMed  Google Scholar 

  148. Khajuria R, Mahajan S, Ambica (2017) Expeditious synthesis of coumarin-pyridone conjugates molecules and their anti-microbial evaluation. J Chem Sci 129:1549–1557

    Google Scholar 

  149. Tiwari SV, Seijas JA, Vazquez-Tato MP et al (2017) Facile synthesis of novel coumarin derivatives, antimicrobial analysis, enzyme assay, docking study, ADMET prediction and toxicity study. Molecules 22:1172–1190

    Article  CAS  PubMed Central  Google Scholar 

  150. Pratap R, Ram VJ (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[H]chromenes in organic synthesis. Chem Rev 114:10476–10526

    Article  CAS  PubMed  Google Scholar 

  151. Dongamanti A, Bommidi VL, Sidda R et al (2015) Microwave-assisted synthesis of substituted 4-chloro-8-methyl-2- phenyl-1,5-dioxa-2H-phenanthren-6-ones and their antimicrobial activity. Med Chem Res 24:1487–1495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diksha Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R.K., Katiyar, D. (2019). Recent Advances in the Development of Coumarin Derivatives as Antifungal Agents. In: Singh, K., Srivastava, N. (eds) Recent Trends in Human and Animal Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9435-5_10

Download citation

Publish with us

Policies and ethics