Skip to main content

AMR Implementation of 3D SIP-CESE MHD Model on Six-Component Overset Grid System

  • Chapter
  • First Online:
Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 976 Accesses

Abstract

Coronal-heliospheric space is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains such as the corona and the inner heliosphere. The scalable, massively parallel, block-based, adaptive-mesh refinement (AMR) allows resolving such disparate spatial and temporal scales throughout the computational domain with even less cells but can generate a necessary resolution. This chapter is devoted to the adaptive mesh refinement (AMR) implementation of Solar-Interplanetary space-time conservation element and solution element (CESE) magnetohydrodynamic model (SIP-CESE MHD model) with the aid of the parallel AMR package PARAMESH. Two AMR realization strategies are employed: one uses a solution adaptive technique directly for the CESE solver in the six-component grid system introduced in Chap. 5, while the other is implemented for the CESE solver of associated partial differential equations (PDEs) in the reference space of curvilinear coordinates transformed from the original governing partial differential equations in the physical space. Under these two AMR implementations, tests are carried out for the solar wind background study, and numerical results are compared with the observations in the solar corona and in interplanetary space from the Solar and Heliospheric Observatory (SOHO) and spacecraft data from OMNI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramenko V, Yurchyshyn V, Linker J, Mikić Z, Luhmann J, Lee CO (2010) Low-latitude coronal holes at the minimum of the 23rd solar cycle. Astrophys J 712:813

    Article  ADS  Google Scholar 

  2. Amari T, Luciani JF, Joly P (1999) A preconditioned semi-implicit method for magnetohydrodynamics equations. SIAM J Sci Comput 21(3):970–986. https://doi.org/10.1137/S1064827596304824

    Article  MathSciNet  MATH  Google Scholar 

  3. Arge CN, Pizzo VJ (2000) Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105(10):465

    Google Scholar 

  4. Aschwanden MJ, Burlaga LF, Kaiser ML, Ng CK, Reames DV, Reiner MJ, Gombosi TI, Lugaz N, Manchester W, Roussev II, Zurbuchen TH, Farrugia CJ, Galvin AB, Lee MA, Linker JA, Mikić Z, Riley P, Alexander D, Sandman AW, Cook JW, Howard RA, Odstrčil D, Pizzo VJ, Kóta J, Liewer PC, Luhmann JG, Inhester B, Schwenn RW, Solanki SK, Vasyliunas VM, Wiegelmann T, Blush L, Bochsler P, Cairns IH, Robinson PA, Bothmer V, Kecskemety K, Llebaria A, Maksimovic M, Scholer M, Wimmer-Schweingruber RF (2008) Theoretical modeling for the STEREO mission. Space Sci Rev 136:565–604. https://doi.org/10.1007/s11214-006-9027-8

    Article  ADS  Google Scholar 

  5. Asensio IA, Laguna AA, Aissa MH, Poedts S, Ozak N, Lani A (2019) A GPU-enabled implicit finite volume solver for the ideal two-fluid plasma model on unstructured grids. Comput Phys Commun 239:16–32. https://doi.org/10.1016/j.cpc.2019.01.019

    Article  ADS  MathSciNet  Google Scholar 

  6. Balsara DS (1998) Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics. Astrophys J Suppl Ser 116(1):133

    Article  ADS  Google Scholar 

  7. Balsara DS (2001) Divergence-free adaptive mesh refinement for magnetohydrodynamics. J Comput Phys 174:614–648. https://doi.org/10.1006/jcph.2001.6917

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Balsara DS (2001) Total variation diminishing scheme for relativistic magnetohydrodynamics. Astrophys J Suppl Ser 132:83–101. https://doi.org/10.1086/318941

    Article  ADS  Google Scholar 

  9. Balsara DS (2004) Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys J Suppl Ser 151:149–184

    Article  ADS  Google Scholar 

  10. Balsara DS (2012) Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J Comput Phys 231(22):7504–7517

    Article  ADS  MathSciNet  Google Scholar 

  11. Balsara DS, Spicer D (1999) Maintaining pressure positivity in magnetohydrodynamic simulations. J Comput Phys 148(1):133–148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Balsara DS, Spicer DS (1999) A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J Comput Phys 149(1):270–292

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82:64–84. https://doi.org/10.1016/0021-9991(89)90035-1

    Article  ADS  MATH  Google Scholar 

  14. Bilenko IA (2002) Coronal holes and the solar polar field reversal. Astron Astrophys 396:657

    Article  ADS  Google Scholar 

  15. Brackbill JU, Barnes DC (1980) The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J Comput Phys 35(3):426–430. https://doi.org/10.1016/0021-9991(80)90079-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bridges TJ (2008) Conservation laws in curvilinear coordinates: a short proof of Vinokur’s theorem using differential forms. Appl Math Comput 202(2):882–885

    MathSciNet  MATH  Google Scholar 

  17. Casper J, Carpenter MH (1998) Computational considerations for the simulation of shock-induced sound. SIAM J Sci Comput 19(3):813–828

    Article  MathSciNet  MATH  Google Scholar 

  18. Chacón L, Stanier A (2016) A scalable, fully implicit algorithm for the reduced two-field low-\(\beta \) extended MHD model. J Comput Phys 326:763–772. https://doi.org/10.1016/j.jcp.2016.09.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chang SC (1995) The method of space-time conservation element and solution element: a new approach for solving the Navier-Stokes and Euler equations. J Comput Phys 119(2):295–324. https://doi.org/10.1006/jcph.1995.1137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chang SC, Wang XY, Chow CY (1999) The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. J Comput Phys 156(1):89–136

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Cohen O, Sokolov IV, Roussev II, Gombosi TI (2008) Validation of a synoptic solar wind model. J Geophys Res 113(A12):A03, 104

    Article  Google Scholar 

  22. Colella P, Woodward PR (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys 54(1):174–201

    Article  ADS  MATH  Google Scholar 

  23. Colella P et al (2007) Chombo software package for AMR applications design document. Technical report, Applied Numerical Algorithms Group, NERSC Division, Lawrence Berkeley National Laboratory Berkeley, CA

    Google Scholar 

  24. Dai W, Woodward PR (1998) A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J Comput Phys 142(2):331–369

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. De Zeeuw DL (1993) A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations. PhD thesis, University of Michigan, Ann Arbor, MI, USA, UMI Order No. GAX94-09674

    Google Scholar 

  26. Donat R, Osher S (1990) Propagation of error into regions of smoothness for non-linear approximations to hyperbolic equations. Comput Methods Appl Mech Eng 80(1–3):59–64

    Article  ADS  MATH  Google Scholar 

  27. Dryer M (2007) Space weather simulation in 3D MHD from the Sun to the Earth and beyond to 100 AU: a modeler’s perspective of the present state of the art. Asian J Phys 16:97–121

    Google Scholar 

  28. Evans CR, Hawley JF (1988) Simulation of magnetohydrodynamic flows - a constrained transport method. Astrophys J 332:659–677. https://doi.org/10.1086/166684

    Article  ADS  Google Scholar 

  29. Feng XS, Hu YQ, Wei FS (2006) Modeling the resistive MHD by the CESE method. Solar Phys 235:235–257

    Article  ADS  Google Scholar 

  30. Feng XS, Zhou YF, Wu ST (2007) A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys J 655:1110

    Article  ADS  Google Scholar 

  31. Feng XS, Yang LP, Xiang CQ, Wu ST, Zhou YF, Zhong DK (2010) Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723:300

    Article  ADS  Google Scholar 

  32. Feng XS, Xiang CQ, Zhong DK (2011) The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms (in chinese). Sci Sin-Terrae 41:1–28

    Google Scholar 

  33. Feng XS, Zhang SH, Xiang CQ, Yang LP, Jiang CW, Wu ST (2011) A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys J 734:50

    Article  ADS  Google Scholar 

  34. Feng XS, Jiang CW, Xiang CQ, Zhao XP, Wu ST (2012) A data-driven model for the global coronal evolution. Astrophys J 758(1):62

    Article  ADS  Google Scholar 

  35. Feng XS, Yang LP, Xiang CQ, Jiang CW, Ma XP, Wu ST, Zhong DK, Zhou YF (2012) Validation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations. Solar Phys 279:207–229

    Article  ADS  Google Scholar 

  36. Feng XS, Yang LP, Xiang CQ, Liu Y, Zhao XP, Wu ST (2012) Numerical study of the global corona for CR 2055 driven by daily updated synoptic magnetic field. In: Pogorelov NV, Font JA, Audit E, Zank GP (eds) Numerical modeling of space plasma slows (ASTRONUM 2011), Astronomical society of the pacific conference series, vol 459, p 202

    Google Scholar 

  37. Feng XS, Zhong DK, Xiang CQ, Zhang Y (2013) GPU-accelerated computing of three-dimensional solar wind background. Sci China Earth Sci 56(11):1864–1880

    Article  Google Scholar 

  38. Feng XS, Zhong DK, Xiang CQ, Zhang Y (2013) GPU computing in space weather modeling. In: Pogorelov NV, Audit E, Zank GP (eds) Numerical modeling of space plasma flows (ASTRONUM2012), Astronomical society of the pacific conference series, vol 474, p 131

    Google Scholar 

  39. Feng XS, Xiang CQ, Zhong DK, Zhou YF, Yang LP, Ma XP (2014) SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes. Comput Phys Commun 185:1965–1980. https://doi.org/10.1016/j.cpc.2014.03.027

    Article  ADS  MathSciNet  Google Scholar 

  40. Fisk LA, Schwadron NA, Zurbuchen TH (1999) Acceleration of the fast solar wind by the emergence of new magnetic flux. J Geophys Res 104(19):765

    Google Scholar 

  41. Fryxell B (2000) Flash: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J Suppl Ser 131:273

    Article  ADS  Google Scholar 

  42. Fuchs FG, McMurry AD, Mishra S, Risebro NH, Waagan K (2010) Finite volume methods for wave propagation in stratified magneto-atmospheres. Commun Comput Phys 7(3):1–30

    MathSciNet  MATH  Google Scholar 

  43. Garaizar X, Hornung R, Kohn S (1999) Structured adaptive mesh refinement applications infrastructure. Technical report, Lawrence Livermore National Laboratory

    Google Scholar 

  44. Gardiner TA, Stone JM (2005) An unsplit Godunov method for ideal MHD via constrained transport. J Comput Phys 205(2):509–539

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Gardiner TA, Stone JM (2008) An unsplit Godunov method for ideal MHD via constrained transport in three dimensions. J Comput Phys 227(8):4123–4141. https://doi.org/10.1016/j.jcp.2007.12.017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Germaschewski K, Raeder J (2011) Using automated code generation to support high performance extended MHD integration in OpenGGCM. In: Pogorelov NV, Audit E, Zank GP (eds) 5th international conference of numerical modeling of space plasma flows (ASTRONUM 2010), Astronomical society of the pacific conference series, vol 444, p 197

    Google Scholar 

  47. Gombosi TI, de Zeeuw DL, Powell KG et al (2003) Adaptive mesh refinement for global magnetohydrodynamic simulation. In: Büchner J, Dum C, Scholer M (eds) Space plasma simulation. Lecture notes in physics, vol 615. Springer, Berlin, pp 247–274

    Google Scholar 

  48. Greenough JA, Rider WJ (2004) A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov. J Comput Phys 196:259–281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Harvey KL, Recely F (2002) Polar coronal holes during cycles 22 and 23. Solar Phys 211:31

    Article  ADS  Google Scholar 

  50. Hayashi K (2005) Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit solar wind mass flux. Astrophys J Suppl Ser 161:480

    Article  ADS  Google Scholar 

  51. Hoeksema JT, Wilcox JM, Scherrer PH (1983) The structure of the heliospheric current sheet-1978-1982. J Geophys Res 88(A12):9910–9918. https://doi.org/10.1029/JA088iA12p09910

    Article  ADS  Google Scholar 

  52. van der Holst B, Manchester WB, Frazin RA, Vásquez AM, Tóth G, Gombosi TI (2010) A data-driven, two-temperature solar wind model with Alfvén waves. Astrophys J 725(1):1373

    Article  ADS  Google Scholar 

  53. Jameson L (2003) AMR vs high order schemes. J Sci Comput 18:1–24

    Article  MathSciNet  MATH  Google Scholar 

  54. Janhunen P (2000) A positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J Comput Phys 160(2):649–661. https://doi.org/10.1006/jcph.2000.6479

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Jiang CW, Feng XS, Zhang J, Zhong DK (2010) AMR simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates. Solar Phys 267:463–491

    Article  ADS  Google Scholar 

  56. Jiang GS, Wu CC (1999) A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J Comput Phys 150:561–594

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Keppens R, Meliani Z, van Marle A, Delmont P, Vlasis A, van der Holst B (2012) Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J Comput Phys 231(3):718–744

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Kifonidis K, Müller E (2012) On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates. Astron Astrophys 544:A47. https://doi.org/10.1051/0004-6361/201116979

    Article  ADS  Google Scholar 

  59. Lani A, Yalim MS, Poedts S (2014) A GPU-enabled finite volume solver for global magnetospheric simulations on unstructured grids. Comput Phys Commun 185(10):2538–2557

    Article  ADS  MATH  Google Scholar 

  60. Innocenti ME, Johnson A, Markidis S, Amaya J, Deca J, Olshevsky V, Lapenta G (2017)Progress towards physics-based space weather forecasting with exascale computing. Adv Eng Softw 111:3–17

    Article  Google Scholar 

  61. Lehner L, Liebling SL, Reula O (2006) AMR, stability and higher accuracy. Class Quantum Gravity 23(16):S421

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Li ST, Hyman JM (2003) Adaptive mesh refinement for finite difference WENO schemes. Technical report, LA-UR-03-8927, Los Alamos National Lab

    Google Scholar 

  63. Linde T (2002) MHD simulations with the FLASH code. In: APS March meeting abstracts, p F3.005

    Google Scholar 

  64. Liu YX, Ji Z, Feng XS, Zhou YF (2010) CESE method for resistive magnetohydrodynamics. Chin J Space Sci 30(3):211–220

    Google Scholar 

  65. Lugaz N, Downs C, Shibata K, Roussev II, Asai A, Gombosi TI (2011) Numerical investigation of a coronal mass ejection from an Anemone active region: reconnection and deflection of the 2005 August 22 eruption. Astrophys J 738(2):127

    Article  ADS  Google Scholar 

  66. Luhmann JG, Lee CO, Li Y, Arge CN, Galvin AB, Simunac K, Russell CT, Howard RA, Petrie G (2009) Solar wind sources in the late declining phase of cycle 23: effects of the weak solar polar field on high speed streams. Solar Phys 256(1):285–305. https://doi.org/10.1007/s11207-009-9354-5

    Article  ADS  Google Scholar 

  67. MacNeice P, Olson KM, Mobarry C, de Fainchtein R, Packer C (2000) PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput Phys Commun 126:330–354

    Article  ADS  MATH  Google Scholar 

  68. MacNeice P, Olson KM, Mobarry C, de Fainchtein R, Packer C (2011) PARAMESH V4.1: parallel adaptive mesh refinement. Astrophys Sour Code Libr. arXiv:1106.009

  69. Majda A, Osher S (1977) Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations. Commun Pure Appl Math 30(6):671–705

    Article  MathSciNet  MATH  Google Scholar 

  70. Marder B (1987) A method for incorporating Gauss’ law into electromagnetic PIC codes. J Comput Phys 68(1):48–55

    Article  ADS  MATH  Google Scholar 

  71. McComas DJ, Elliott HA, Gosling JT, Reisenfeld DB, Skoug RM, Goldstein BE, Neugebauer M, Balogh A (2002) Ulysses’ second fast-latitude scan: complexity near solar maximum and the reformation of polar coronal holes. Geophys Res Lett 29(9):1290

    ADS  Google Scholar 

  72. McComas DJ, Elliott HA, Schwadron NA, Gosling JT, Skoug RM, Goldstein BE (2003) The three-dimensional solar wind around solar maximum. Geophys Res Lett 30(10):1517

    Article  ADS  Google Scholar 

  73. McComas DJ, Elliott HA, Gosling JT, Skoug RM (2006) Ulysses observations of very different heliospheric structure during the declining phase of solar activity cycle 23. Geophys Res Lett 33:9102

    Article  ADS  Google Scholar 

  74. Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A (2007) PLUTO: a numerical code for computational astrophysics. Astrophys J Suppl Ser 170:228–242. https://doi.org/10.1086/513316

    Article  ADS  Google Scholar 

  75. Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A (1999) Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6:2217–2224

    Article  ADS  Google Scholar 

  76. Mikić Z, Downs C, Linker JA, Caplan RM, Mackay DH, Upton LA, Riley P, Lionello R, Török T, Titov VS, Wijaya J, Druckmüller M, Pasachoff JM, Carlos W (2018) Predicting the corona for the 21 August 2017 total solar eclipse. Nat Astron 2:913–921. https://doi.org/10.1038/s41550-018-0562-5

    Article  ADS  Google Scholar 

  77. Myong RS, Roe PL (1998) On Godunov-type schemes for magnetohydrodynamics. J Comput Phys 147:545–567

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Nakamizo A, Tanaka T, Kubo Y, Kamei S, Shimazu H, Shinagawa H (2009) Development of the 3-D MHD model of the solar corona-solar wind combining system. J Geophys Res (Space Physics) 114:A07109. https://doi.org/10.1029/2008JA013844

    Article  Google Scholar 

  79. Nishikawa H, Roe P, Suzuki Y, van Leer B (2003) A general theory of local preconditioning and its application to 2D ideal MHD equations. In: 16th AIAA computational fluid dynamics conference, American Institute of Aeronautics and Astronautics, Orlando, Florida, Fluid dynamics and co-located conferences, AIAA 2003-3704. https://doi.org/10.2514/6.2003-370410.2514/6.2003-3704

  80. Odstril D, Pizzo VJ (1999) Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J Geophys Res 104:28, 225

    Google Scholar 

  81. Ogino T, Walker RJ (1984) A magnetohydrodynamic simulation of the bifurcation of tail lobes during intervals with a northward interplanetary magnetic field. Geophys Res Lett 11(10):1018–1021. https://doi.org/10.1029/GL011i010p01018

    Article  ADS  Google Scholar 

  82. Olson K (2006) PARAMESH: a parallel adaptive grid tool. In: James M, Gunther B, Nobuyuki S, Akin E, Anil D (eds) Parallel computational fluid dynamics 2005: theory and applications: proceedings of the parallel CFD conference. Elsevier, Amsterdam, pp 341–348

    Chapter  Google Scholar 

  83. Owens MJ, Crooker NU (2006) Coronal mass ejections and magnetic flux buildup in the heliosphere. J Geophys Res 111(A10):A10104

    Google Scholar 

  84. Parashar M (2007) Grace grid adaptive computational engine. Technical report, Rutgers University

    Google Scholar 

  85. Parent B (2012) Positivity-preserving high-resolution schemes for systems of conservation laws. J Comput Phys 231(1):173–189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Pätzold M, Tsurutani BT, Bird MK (1997) An estimate of large-scale solar wind density and velocity profiles in a coronal hole and the coronal streamer belt. J Geophys Res 102(24):151

    Google Scholar 

  87. Poinsot TJ, Lele SK (1992) Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys 101:104–129

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Porfir’eva GA, Yakunina GV, Delone AB, Oreshina AV, Oreshina IV (2009) Coronal streamers on the Sun and their physical properties. J Phys Stud 13(2):2901–2905

    Google Scholar 

  89. Powell KG, Roe PL, Myong RS, Aee DD (1995) An upwind scheme for magnetohydrodynamics. AIAA 95-1704-CP, pp 661–671

    Google Scholar 

  90. Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL (1999) A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154:284–309. https://doi.org/10.1006/jcph.1999.6299

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Qamar S, Mudasser S (2010) On the application of a variant CE/SE method for solving two-dimensional ideal MHD equations. Appl Numer Math 60(6):587–606

    Article  MathSciNet  MATH  Google Scholar 

  92. Rendleman CA, Beckner VE, Lijewski M, Crutchfield W, Bell JB (2000) Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Comput Vis Sci 3:147

    Article  MATH  Google Scholar 

  93. Reynolds DR, Samtaney R, Tiedeman HC (2012) A fully implicit Newton-Krylov-Schwarz method for tokamak magnetohydrodynamics: Jacobian construction and preconditioner formulation. Comput Sci Discov 5(1):014003. http://stacks.iop.org/1749-4699/5/i=1/a=014003

    Article  ADS  Google Scholar 

  94. Rider W, Kamm J (2006) How effective are high-order approximations in shock-capturing methods? is there a law of diminishing returns? In: Groth C, Zingg DW (eds) Computational fluid dynamics 2004. Springer, Berlin, pp 401–405

    Chapter  Google Scholar 

  95. Riley P (2007) An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophys J Lett 667:L97

    Article  ADS  Google Scholar 

  96. Riley P, Lionello R, Linker JA, Mikic Z, Luhmann J, Wijaya J (2011) Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys 274:361–377

    Article  ADS  Google Scholar 

  97. Roe PL (1986) Characteristic-based schemes for the Euler equations. Annu Rev Fluid Mech 18:337–365

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. Sanderson TR, Appourchaux T, Hoeksema JT, Harvey KL (2003) Observations of the Sun’s magnetic field during the recent solar maximum. J Geophys Res 108(A1):1035. https://doi.org/10.1029/2002JA009388

  99. Shen C, Qiu JM, Christlieb A (2011) Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations. J Comput Phys 230:3780–3802

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Smith EJ (2011) Solar cycle evolution of the heliospheric magnetic field: the Ulysses legacy. J Atmos Solar Terr Phys 73:277

    Article  ADS  Google Scholar 

  101. Smith EJ, Marsden RG, Balogh A, Gloeckler G, Geiss J, McComas DJ, McKibben RB, MacDowall RJ, Lanzerotti LJ, Krupp N, Krueger H, Landgraf M (2003) The sun and heliosphere at solar maximum. Science 302(5648):1165–1169. https://doi.org/10.1126/science.1086295

    Article  ADS  Google Scholar 

  102. Stone JM, Gardiner TA, Teuben P, Hawley JF, Simon JB (2008) Athena: a new code for astrophysical MHD. Astrophys J Suppl Ser 178:137–177. https://doi.org/10.1086/588755

    Article  ADS  Google Scholar 

  103. Sun M (1998) Numerical and experimental studies of shock wave interaction with bodies. PhD thesis, Tohoku University

    Google Scholar 

  104. Sun M, Takayama K (2001) A solution-adaptive technique using unstructured hexahedral grids. AIAA-2001-2656

    Google Scholar 

  105. Tafti D (1996) Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations. Comput Fluids 25(7):647–665

    Article  MathSciNet  MATH  Google Scholar 

  106. Tanaka T (1994) Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J Comput Phys 111:381–390. https://doi.org/10.1006/jcph.1994.1071

    Article  ADS  MATH  Google Scholar 

  107. Tokumaru M, Kojima M, Fujiki K, Hayashi K (2009) Non-dipolar solar wind structure observed in the cycle 23/24 minimum. Geophys Res Lett 36:9101

    Article  ADS  Google Scholar 

  108. Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, De Zeeuw DL, Hansen KC, Kane KJ, Manchester WB, Oehmke RC, Powell KG, Ridley AJ, Roussev II, Stout QF, Volberg O, Wolf RA, Sazykin S, Chan A, Yu B, Kota J (2005) Space weather modeling framework: a new tool for the space science community. J Geophys Res Space Phys 110(A12):12, 226

    Google Scholar 

  109. Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, Fang F, Manchester WB, Meng X, Najib D, Powell KG, Stout QF, Glocer A, Ma YJ, Opher M (2012) Adaptive numerical algorithms in space weather modeling. J Comput Phys 231:870–903. https://doi.org/10.1016/j.jcp.2011.02.006

    Article  ADS  MathSciNet  Google Scholar 

  110. van der Holst B, Keppens R (2007) Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications. J Comput Phys 226(1):925–946

    Article  ADS  MATH  Google Scholar 

  111. Vinokur M (1974) Conservation equations of gasdynamics in curvilinear coordinate systems. J Comput Phys 14(2):105–125

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Waagan K (2009) A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics. J Comput Phys 228:8609–8626

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Waldmeier M (1981) Cyclic variations of the polar coronal hole. Solar Phys 70:251

    Article  ADS  Google Scholar 

  114. Wang Y, Robbrecht E, Sheeley NR (2009) On the weakening of the polar magnetic fields during solar cycle 23. Astrophys J 707:1372–1386. https://doi.org/10.1088/0004-637x/707/2/1372

    Article  ADS  Google Scholar 

  115. Wang Y, Feng XS, Xiang CQ (2019) An effective matrix-free implicit scheme for the magnetohydrodynamic solar wind simulations. Comput Fluids 179:67–77. https://doi.org/10.1016/j.compfluid.2018.10.014

    Article  MathSciNet  MATH  Google Scholar 

  116. Wang Y, Feng XS, Zhou YF, Gan XB (2019) A multi-GPU finite volume solver for magnetohydrodynamics-based solar wind simulations. Comput Phys Commun 238:181–193. https://doi.org/10.1016/j.cpc.2018.12.003

    Article  ADS  MathSciNet  Google Scholar 

  117. Wang YM, Sheeley Jr NR, Walters JH, Brueckner GE, Howard RA, Michels DJ, Lamy PL, Schwenn R, Simnett GM (1998) Origin of streamer material in the outer corona. Astrophys J Lett 498(2):L165–L168. http://stacks.iop.org/1538-4357/498/i=2/a=L165

  118. Watermann J, Wintoft P, Sanahuja B, Saiz E, Poedts S, Palmroth M, Milillo A, Metallinou FA, Jacobs C, Ganushkina NY, Daglis IA, Cid C, Cerrato Y, Balasis G, Aylward AD, Aran A (2009) Models of solar wind structures and their interaction with the Earth’s space environment. Space Sci Rev 147(3):233–270. https://doi.org/10.1007/s11214-009-9494-9

    Article  ADS  Google Scholar 

  119. Wei FS, Feng XS, Cai HC, Zhou QJ (2003) Global distribution of coronal mass outputs and its relation to solar magnetic field structures. J Geophys Res 108:1238

    Article  Google Scholar 

  120. Wong HC, Wong UH, Feng X, Tang Z (2011) Efficient magnetohydrodynamic simulations on graphics processing units with CUDA. Comput Phys Commun 182(10):2132–2160

    Article  ADS  MathSciNet  Google Scholar 

  121. Wong UH, Aoki T, Wong HC (2014a) Efficient magnetohydrodynamic simulations on distributed multi-GPU systems using a novel GPU direct-MPI hybrid approach. Comput Phys Commun 185(7):1901–1913

    Article  ADS  Google Scholar 

  122. Wong UH, Wong HC, Ma Y (2014b) Global magnetohydrodynamic simulations on multiple GPUs. Comput Phys Commun 185(1):144–152

    Article  ADS  Google Scholar 

  123. Wu ST, Wang AH, Liu Y, Hoeksema JT (2006) Data-driven magnetohydrodynamic model for active region evolution. Astrophys J 652:800

    Article  ADS  Google Scholar 

  124. Yalim M, Abeele DV, Lani A, Quintino T, Deconinck H (2011) A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach. J Comput Phys 230(15):6136–6154. https://doi.org/10.1016/j.jcp.2011.04.020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Yang LP, Feng XS, Xiang CQ, Zhang SH, Wu ST (2011) Simulation of the unusual solar minimum with 3D SIP-CESE MHD model by comparison with multi-satellite observations. Solar Phys 271:91–110

    Article  ADS  Google Scholar 

  126. Yang LP, Feng XS, Xiang CQ, Liu Y, Zhao XP, Wu ST (2012) Time-dependent MHD modeling of the global solar corona for year 2007: driven by daily-updated magnetic field synoptic data. J Geophys Res 117(A16):A08110

    ADS  Google Scholar 

  127. Yeates AR, Mackay DH, van Ballegooijen AA, Constable JA (2010) A nonpotential model for the Sun’s open magnetic flux. J Geophys Res 115(A14):A09, 112

    Article  Google Scholar 

  128. Zachary AL, Colella P (1992) A higher-order Godunov method for the equations of ideal magnetohydrodynamics. J Comput Phys 99:341–347

    Article  ADS  MATH  Google Scholar 

  129. Zhang M, Feng XS (2015) Implicit dual-time stepping method for a solar wind model in spherical coordinates. Comput Fluids 115:115–123. https://doi.org/10.1016/j.compfluid.2015.03.020

    Article  MathSciNet  MATH  Google Scholar 

  130. Zhang M, Blankson I, Chang SC, Lin SC, Yu STJ (2004) Solving magnetohydrodynamic equations without special treatment for divergence-free magnetic field. AIAA J 42:2605–2608

    Article  ADS  Google Scholar 

  131. Zhang M, John Yu ST, Henry Lin SC, Chang SC, Blankson I (2006) Solving the MHD equations by the space time conservation element and solution element method. J Comput Phys 214:599–617

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. Ziegler U (2008) The nirvana code: parallel computational MHD with adaptive mesh refinement. Comput Phys Commun 179(4):227–244. https://doi.org/10.1016/j.cpc.2008.02.017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. Ziegler U (2011) A semi-discrete central scheme for magnetohydrodynamics on orthogonal-curvilinear grids. J Comput Phys 230(4):1035–1063. https://doi.org/10.1016/j.jcp.2010.10.022

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueshang Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, X. (2020). AMR Implementation of 3D SIP-CESE MHD Model on Six-Component Overset Grid System. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-9081-4_6

Download citation

Publish with us

Policies and ethics