Skip to main content
Log in

GPU-accelerated computing of three-dimensional solar wind background

  • Research Paper
  • Progress of Projects Supported by NSFC
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

High-performance computational models are required to make the real-time or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolution of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements from spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramenko V, Yurchyshyn V, Linker J, et al. 2010. Low-latitude coronal holes at the minimum of the 23rd solar cycle. Astrophys J, 712: 813–818

    Article  Google Scholar 

  • Arge C N, Pizzo V J. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res, 105: 10465–10479

    Article  Google Scholar 

  • Arge C N, Odstrcil D, Pizzo V J, et al. 2003. Improved method for specifying solar wind speed near the sun. In: Velli M, Bruno R, Malara F, et al., eds. Solar Wind Ten, American Institute of Physics Conference Series, 679: 190–193

    Google Scholar 

  • Arge C N, Henney C J, Koller J, et al. 2010. Air Force data assimilative photospheric flux transport (ADAPT) model. Twelfth International Solar Wind Conference, AIP Conference Proceedings, 1216: 343–346

    Article  Google Scholar 

  • Arge C N, Henney C J, Koller J, et al. 2011. Improving data drivers for coronal and solar wind models. In: Pogorelov N V, Audit E, Zank G P, eds. 5th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2010). Astron Soc Pacific Conf Ser, 444: 99–104

    Google Scholar 

  • Aschwanden M, Burlaga L F, Kaiser M L, et al. 2008. Theoretical modeling for the STEREO mission. Space Sci Rev, 136: 565–604

    Article  Google Scholar 

  • Baker D N. 2002. How to cope with space weather. Science, 297: 1486–1487

    Article  Google Scholar 

  • Baker D N, Wiltberger M J, Weigel R S, et al. 2007. Present status and future challenges of modeling the Sun Earth end-to-end system. J Atmos Sol-Terr Phys, 69: 3–17

    Article  Google Scholar 

  • Behannon K W, Neubauer F M, Barnstorf H. 1981. Fine-scale characteristics of interplanetary sector boundaries. J Geophys Res, 86: 3273–3287

    Article  Google Scholar 

  • Belleman R G, Bdorf J, Zwart S F P. 2008. High performance direct gravitational n-body simulations on graphics processing units II: An implementation in CUDA. New Astron, 13: 103–112

    Article  Google Scholar 

  • Blanco J J, Rodríguez-Pacheco J, Hidalgo M A, et al. 2006. Analysis of the heliospheric current sheet fine structure: Single or multiple current sheets. J Atmos Sol-Terr Phys, 68: 2173–2181

    Article  Google Scholar 

  • Bothmer V, Daglis I A. 2007. Space Weather: Physics and Effects. Chichester: Praxis Publishing. 1

    Book  Google Scholar 

  • Brandvik T, Pullan G. 2008. Acceleration of a 3D Euler solver using commodity graphics hardware. AIAA 2008-607, 46th AIAA Aerospace Sciences Meeting and Exhibit. January 2008, Reno, Nevada

    Google Scholar 

  • Che S, Boyer M, Meng J, et al. 2008. A performance study of general-purpose applications on graphics processors using CUDA. J Parallel Distrib Comput, 68: 1370–1380

    Article  Google Scholar 

  • Cohen O, Sokolov I V, Roussev I I, et al. 2008. Validation of a synoptic solar wind model. J Geophys Res, 113: A03104

    Article  Google Scholar 

  • De Zeeuw D L. 1993. A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations. Doctoral Dissertation. Ann Arbor: The University of Michigan

    Google Scholar 

  • DeLeon R, Senocak I. 2012. GPU-accelerated large-eddy simulation of turbulent channel flows. AIAA 2012-0722, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09–12 January 2012, Nashville, Tennessee

    Google Scholar 

  • Dryer M. 2007. Space weather simulation in 3D MHD from the Sun to the Earth and beyond to 100 AU: A modeler’s perspective of the present state of the art. Asian J Phys, 16: 97–121

    Google Scholar 

  • Elsen E, Legresley P, Darve E. 2008. Large calculation of the flow over a hypersonic vehicle using a GPU. J Comp Phys, 227: 10148–10161

    Article  Google Scholar 

  • Feng X S, Zhou Y F, Wu S T. 2007. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys J, 655: 1110–1126

    Article  Google Scholar 

  • Feng X S, Yang L P, Xiang C Q, et al. 2010. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J, 723: 300

    Article  Google Scholar 

  • Feng X S, Xiang C Q, Zhong D K. 2011a. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms (in Chinese). Sci Sin-Terrae, 41: 1–28

    Google Scholar 

  • Feng X S, Zhang S H, Xiang C Q, et al. 2011b. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys J, 734: 50

    Article  Google Scholar 

  • Feng X S, Yang L P, Xiang C Q, et al. 2012a. Validation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations. Solar Phys, 279: 207–229

    Article  Google Scholar 

  • Feng X S, Yang L P, Xiang C Q, et al. 2012b. Numerical study of the global corona for CR 2055 driven by daily updated synoptic magnetic field. In: Pogorelov N V, Font J A, Audit E, et al., eds. Numerical Modeling of Space Plasma Slows (ASTRONUM 2011). Astron Soc Pacific Conf Ser, 459: 202–208

    Google Scholar 

  • Feng X S, Jiang C W, Xiang C Q, et al. 2012c. A data-driven model for the global coronal evolution. Astrophys J, 758: 62

    Article  Google Scholar 

  • Gaburov E, Harfst S, Zwart S F P. 2009. SAPPORO: A way to turn your graphics cards into a GRAPE-6. New Astron, 14: 630–637

    Article  Google Scholar 

  • Gibson S E, Kozyra J U, de Toma G, et al. 2009. If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J Geophy Res, 114: A09105

    Article  Google Scholar 

  • Henney C J, Toussaint W A, White S M, et al. 2012. Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather, 10: S02011

    Article  Google Scholar 

  • van der Holst B, Keppens R. 2007. Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications. J Comput Phys, 226: 925–946

    Article  Google Scholar 

  • van der Holst B, Manchester W B, Frazin R A, et al. 2010. A data-driven, two-temperature solar wind model with Alfvén waves. Astrophys J, 25: 1373–1383

    Article  Google Scholar 

  • Hu Y Q, Guo X C, Wang C. 2007. On the ionospheric and reconnection potentials of the earth: Results from global MHD simulations. J Geophy Res, 112: A07215

    Article  Google Scholar 

  • Jacobsen D A, Thibault J C, Senocak I. 2010. An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters. AIAA 2010-522, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace 4–7 January 2010, Orlando, Florida

    Google Scholar 

  • Janhunen P, Koskinen K E J, Pulkinen T I. 1996. A new global ionosphere-magnetosphere coupling simulation utilizing locally varying time step. In: Rolfe E J, Kaldeich B, eds. International Conference on Substorms. ESA Special Publication 389, 205–210

    Google Scholar 

  • Jiang C W, Feng X S, Zhang J, et al. 2010. AMR simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates. Solar Phys, 267: 463–491

    Article  Google Scholar 

  • Jin M, Manchester W B, van der Holst B, et al. 2012. A global two-temperature corona and inner heliosphere model: A comprehensive validation study. Astrophys J, 745: 6

    Article  Google Scholar 

  • Kestener P, Chateau F, Teyssier R. 2010. Accelerating Euler equations numerical solver on graphics processing units. In: Hsu C H, Yang L, Park J, et al, eds. Algorithms and Architectures for Parallel Processing Lecture Notes in Computer Science 6082. Berlin/Heidelberg: Springer, 281–288

    Chapter  Google Scholar 

  • Kleimann J. 2012. 4π models of CMEs and ICMEs (invited review). Solar Phys, 281: 253–267

    Google Scholar 

  • Lee D, Deane A E. 2009. An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics. J Comput Phys, 228: 952–975

    Article  Google Scholar 

  • Lee C O, Arge C N, Odstrćil D, et al. 2012. Ensemble modeling of CME propagation. Solar Phys, doi: 10.1007/s11207-012-9980-1

    Google Scholar 

  • Lionello R, Linker J A, Mikić Z. 2009. Multispectral emission of the Sun during the first whole Sun month: Magnetohydrodynamic simulations. Astrophys J, 690: 902–912

    Article  Google Scholar 

  • Liu Y, Hoeksema J T, Scherrer P H, et al. 2012. Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys, 279: 295–316

    Article  Google Scholar 

  • Lugaz N, Downs C, Shibata K, et al. 2011. Numerical investigation of a coronal mass ejection from an Anemone active region: Reconnection and deflection of the 2005 August 22 eruption. Astrophys J, 738: 127–139

    Article  Google Scholar 

  • Lyon J, Fedder J, Mobarry C. 2004. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J Atmos Sol-Terr Phys, 66: 1333–1350

    Article  Google Scholar 

  • Lyon J G. 2000. The solar wind-magnetosphere-ionosphere system. Science, 288: 1987–1991

    Article  Google Scholar 

  • Marder B. 1987. A method for incorporating Gauss’ law into electromagnetic PIC codes. J Comput Phys, 68: 48–55

    Article  Google Scholar 

  • McComas D J, Ebert R W, Elliott H A, et al. 2008. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys Res Lett, 35: L18103

    Article  Google Scholar 

  • Michalakes J, Vachharajani M. 2008. GPU acceleration of numerical weather prediction. Parallel Proc Lett, 18: 531–548

    Article  Google Scholar 

  • Mikić Z, Linker J A, Schnack D D, et al. 1999. Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas, 6: 2217–2224

    Article  Google Scholar 

  • Nakamizo A, Tanaka T, Kubo Y, et al. 2009. Development of the 3-D MHD model of the solar corona-solar wind combining system. J Geophys Res, 114: A07109

    Article  Google Scholar 

  • Ogino T. 1986. A three-dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere—The generation of field-aligned currents. J Geophys Res, 91: 6791–6806

    Article  Google Scholar 

  • Ogino T. 2002. Three-dimensional global MHD simulation code for the Earth’s magnetosphere using HPF/JA. Concurrency Comput: Pract Experience, 14: 631–646

    Article  Google Scholar 

  • Owens J D, Houston M, Luebke D, et al. 2008. GPU computing. Proc IEEE, 96: 879–899

    Article  Google Scholar 

  • Owens J D, Luebke D, Govindaraju N, et al. 2007. A survey of general-purpose computation on graphics hardware. Comp Graph Forum, 26: 80–113

    Article  Google Scholar 

  • Podgorny I M, Podgorny A I. 2005. Expansion of solar corona in the Sun’s gravitational field and formation of the heliospheric current sheet. Inter J Geomagn Aeron, 6: GI1005

    Article  Google Scholar 

  • Powell K G, Roe P L, Linde T J, et al. 1999. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys, 154: 284–309

    Article  Google Scholar 

  • Raeder J, Wang Y, Fuller-Rowell T, et al. 2001. Global simulation of magnetospheric space weather effects of the Bastille Day storm. Solar Phys, 204: 323–337

    Article  Google Scholar 

  • Riley P, Linker J A, Mikić, Z, et al. 2006. A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J, 653: 1510–1516

    Article  Google Scholar 

  • Riley P, Lionello R, Linker J A, et al. 2011. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys, 274: 361–377

    Article  Google Scholar 

  • Riley P, Linker J A, Lionello R, et al. 2012a. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atmos Sol-Terr Phys, 83: 1–10

    Article  Google Scholar 

  • Riley P, Stevens M, Linker J A, et al. 2012b. Modeling the global structure of the heliosphere during the recent solar minimum: Model improvements and unipolar streamers. In: Heerikhuisen J, Li G, Pogorelov N, et al, eds. American Institute of Physics Conference Series. Amer Institute Phys Conf Ser, 1436: 337–343

    Google Scholar 

  • Roussev I I, Gombosi T I, Sokolov I V, et al. 2003. A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys J Lett, 595: L57–L61

    Article  Google Scholar 

  • Schenk O, Christen M, Burkhart H. 2008. Algorithmic performance studies on graphics processing units. J Parallel Distrib Comput, 68: 1360–1369

    Article  Google Scholar 

  • Schive H Y, Tsai Y C, Chiueh T. 2010. Gamer: A graphic processing unit accelerated adaptive-mesh-refinement code for astrophysics. Astrophys J Suppl Ser, 186: 457–484

    Article  Google Scholar 

  • Smith E J, Balogh A. 2008. Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations. Geophys Res Lett, 35: L22103

    Article  Google Scholar 

  • Taktakishvili A, Pulkkinen A, MacNeice P, et al. 2011. Modeling of coronal mass ejections that caused particularly large geomagnetic storms using ENLIL heliosphere cone model. Space Weather, 9: S06002

    Article  Google Scholar 

  • Tanaka T. 1994. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J Comput Phys, 111: 381

    Article  Google Scholar 

  • Tanaka T. 1995. Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes. J Geophys Res, 100: 12057–12074

    Article  Google Scholar 

  • Thibault J C, Senocak I. 2009. CUDA implementation of a navier-stokes solver on multi-GPU desktop platforms for incompressible flows. AIAA 2009-758, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5–8 January 2009, Orlando, Florida

    Google Scholar 

  • de Toma G, Arge C N. 2010. The Sun’s magnetic field during the past two minima. Twelfth International Solar Wind Conference, AIP Conference Proceedings, 1216: 679–681

    Google Scholar 

  • Tóth G, Sokolov I V, Gombosi T I, et al. 2005. Space weather modeling framework: A new tool for the space science community. J Geophys Res, 110: A12226

    Article  Google Scholar 

  • Tóth G, van der Holst B, Sokolov I V, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys, 231: 870–903

    Article  Google Scholar 

  • Usmanov A V, Goldstein M L. A three-dimensional MHD solar wind model with pickup protons. J Geophys Res, 2006, 111: A07101

    Article  Google Scholar 

  • Wang Y M, Sheeley N R Jr. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J, 355: 726–732

    Article  Google Scholar 

  • Wang P, Abel T, Kaehler R. 2010. Adaptive mesh fluid simulations on GPU. New Astron, 15: 581–589

    Article  Google Scholar 

  • Watermann J, Wintoft P, Sanahuja B, et al. 2009. Models of solar wind structures and their interaction with the Earth’s space environment. Space Sci Rev, 147: 233–270

    Article  Google Scholar 

  • Webb D F, Howard T A. 2012. Coronal mass ejections: Observations. Living Rev Solar Phys, 9: 3

    Article  Google Scholar 

  • Wong H C, Wong U H, Feng X S, et al. 2011. Efficient magnetohydrodynamic simulations on graphics processing units with CUDA. Comp Phys Commun, 182: 2132–2160

    Article  Google Scholar 

  • Yang L P, Feng X S, Xiang C Q, et al. 2011. Simulation of the unusual solar minimum with 3D SIP-CESE MHD model by comparison with multi-satellite observations. Solar Phys, 2011, 271: 91–110

    Article  Google Scholar 

  • Yang L P, Feng X S, Xiang C Q, et al. 2012. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data. J Geophys Res, 117: A08110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueShang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Zhong, D., Xiang, C. et al. GPU-accelerated computing of three-dimensional solar wind background. Sci. China Earth Sci. 56, 1864–1880 (2013). https://doi.org/10.1007/s11430-013-4661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4661-y

Keywords

Navigation