Skip to main content
Log in

Simulation of the Unusual Solar Minimum with 3D SIP-CESE MHD Model by Comparison with Multi-Satellite Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The observations both near the Sun and in the heliosphere during the activity minimum between solar cycles 23 and 24 exhibit different phenomena from those typical of the previous solar minima. In this paper, we have chosen Carrington rotation 2070 in 2008 to investigate the properties of the background solar wind by using the three-dimensional (3D) Solar–InterPlanetary Conservation Element/Solution Element Magnetohydrodynamic (MHD) model. We also study the effects of polar magnetic fields on the characteristics of the solar corona and the solar wind by conducting simulations with an axisymmetric polar flux added to the observed magnetic field. The numerical results are compared with the observations from multiple satellites, such as the Solar and Heliospheric Observatory (SOHO), Ulysses, Solar Terrestrial Relations Observatory (STEREO), Wind and the Advanced Composition Explorer (ACE). The comparison demonstrates that the first simulation with the observed magnetic fields reproduces some observed peculiarities near the Sun, such as relatively small polar coronal holes, the presence of mid- and low-latitude holes, a tilted and warped current sheet, and the broad multiple streamers. The numerical results also capture the inconsistency between the locus of the minimum wind speed and the location of the heliospheric current sheet, and predict slightly slower and cooler polar streams with a relatively smaller latitudinal width, broad low-latitude intermediate-speed streams, and globally weak magnetic field and low density in the heliosphere. The second simulation with strengthened polar fields indicates that the weak polar fields in the current minimum play a crucial role in determining the states of the corona and the solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramenko, V., Yurchyshyn, V., Linker, J., Mikić, Z., Luhmann, J., Lee, C.O.: 2010, Low-latitude coronal holes at the minimum of the 23rd solar cycle. Astrophys. J. 712, 813.

    Article  ADS  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465.

    Article  ADS  Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295.

    Article  ADS  Google Scholar 

  • Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The ULYSSES solar wind plasma experiment. Astron. Astrophys. Suppl. 92, 237.

    ADS  Google Scholar 

  • Braginskii, S.I.: 1965, Transport processes in a plasma. Rev. Plasma Phys. 1, 205.

    ADS  Google Scholar 

  • Charbonneau, P.: 2005, Dynamo models of the solar cycle. Living Rev. Solar Phys. 2(2).

  • Cooper, J.F., King, J.H., Mathews, G.J., McGuire, R.E., Papitashvili, N.E., Parthasarathy, R., Towheed, S.S.: 1995, Internet access to NASA’s OMNI and COHO data bases for interplanetary missions. In: International Cosmic Ray Conference 4, 1295.

    Google Scholar 

  • de Toma, G., Arge, C.N.: 2010, The Sun’s magnetic field during the past two minima. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 679.

    Google Scholar 

  • Delaboudinière, J., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291.

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1976, The Maunder Minimum. Science 192, 1189.

    Article  ADS  Google Scholar 

  • Endeve, E., Leer, E., Holzer, T.E.: 2003, Two-dimensional magnetohydrodynamic models of the solar corona: Mass loss from the streamer belt. Astrophys. J. 589, 1040.

    Article  ADS  Google Scholar 

  • Erdős, G., Balogh, A.: 2010, North-south asymmetry of the location of the heliospheric current sheet revisited. J. Geophys. Res. 115, 1105.

    Article  Google Scholar 

  • Feng, X., Zhou, Y., Wu, S.T.: 2007, A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys. J. 655, 1110.

    Article  ADS  Google Scholar 

  • Feng, X., Yang, L., Xiang, C., Wu, S.T., Zhou, Y., Zhong, D.: 2010, Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys. J. 723, 300.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Kozyra, J.U., de Toma, G., Emery, B.A., Onsager, T., Thompson, B.J.: 2009, If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J. Geophys. Res. 114, 9105.

    Article  Google Scholar 

  • Hathaway, D.H., Rightmire, L.: 2010, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350.

    Article  ADS  Google Scholar 

  • Hoeksema, J.T.: 2010, Evolution of the large-scale magnetic field over three solar cycles. In: Kosovichev, A.G., Andrei, A.H., Roelot, J.P. (eds.) Solar and Stellar Variability: Impact on Earth and Planets, IAU Symposium 264, 222.

    Google Scholar 

  • Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet – 1978 – 1982. J. Geophys. Res. 88, 9910 – 9918.

    Article  ADS  Google Scholar 

  • Hu, Y.Q., Feng, X.S., Wu, S.T., Song, W.B.: 2008, Three-dimensional MHD modeling of the global corona throughout solar cycle 23. J. Geophys. Res. 113, A03106.

    Article  Google Scholar 

  • Issautier, K., Le Chat, G., Meyer-Vernet, N., Moncuquet, M., Hoang, S., MacDowall, R.J., McComas, D.J.: 2008, Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: Not so dense, not so hot. Geophys. Res. Lett. 35, L19101.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5.

    Article  ADS  Google Scholar 

  • Kataoka, R., Miyoshi, Y.: 2010, Why are relativistic electrons persistently quiet at geosynchronous orbit in 2009? Space Weather 8, 8002.

    Article  Google Scholar 

  • Kataoka, R., Ebisuzaki, T., Kusano, K., Shiota, D., Inoue, S., Yamamoto, T.T., Tokumaru, M.: 2009, Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J. Geophys. Res. 114, 10102.

    Article  Google Scholar 

  • Kirk, M.S., Pesnell, W.D.: 2009, Automated detection of polar coronal holes in the EUV. Bull. Am. Astron. Soc. 41, 834.

    Google Scholar 

  • Kleimann, J., Kopp, A., Fichtner, H., Grauer, R.: 2009, A novel code for numerical 3-D MHD studies of CME expansion. Ann. Geophys. 27, 989.

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Zhao, X.P., Liu, Y., Riley, P., Arge, C.N., Russell, C.T., de Pater, I.: 2009, Effects of the weak polar fields of solar cycle 23: Investigation using OMNI for the STEREO mission period. Solar Phys. 256, 345.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207.

    Article  ADS  Google Scholar 

  • Lepri, S.T., Antiochos, S.K., Riley, P., Zhao, L., Zurbuchen, T.H.: 2008, Comparison of heliospheric in situ data with the quasi-steady solar wind models. Astrophys. J. 674, 1158.

    Article  ADS  Google Scholar 

  • Letfus, V.: 2000, Sunspot and auroral activity during Maunder Minimum. Solar Phys. 197, 203.

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J. Geophys. Res. 104, 9809.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154.

    Article  Google Scholar 

  • Luhmann, J.G., Lee, C.O., Li, Y., Arge, C.N., Galvin, A.B., Simunac, K., Russell, C.T., Howard, R.A., Petrie, G.: 2009, Solar wind sources in the late declining phase of cycle 23: Effects of the weak solar polar field on high speed streams. Solar Phys. 256, 285.

    Article  ADS  Google Scholar 

  • McComas, D.J., Elliott, H.A., Gosling, J.T., Skoug, R.M.: 2006, Ulysses observations of very different heliospheric structure during the declining phase of solar activity cycle 23. Geophys. Res. Lett. 33, L09102.

    Article  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103.

    Article  ADS  Google Scholar 

  • Morgan, H., Habbal, S.R., Woo, R.: 2006, The depiction of coronal structure in white-light images. Solar Phys. 236, 263.

    Article  ADS  Google Scholar 

  • Mursula, K., Hiltula, T.: 2003, Bashful ballerina: southward shifted heliospheric current sheet. Geophys. Res. Lett. 30(22), 2-1.

    Article  Google Scholar 

  • Mursula, K., Hiltula, T., Zieger, B.: 2002, Latitudinal gradients of solar wind speed around the ecliptic: Systematic displacement of the streamer belt. Geophys. Res. Lett. 29(15), 28-1.

    Article  Google Scholar 

  • Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa, H.: 2009, Development of the 3-D MHD model of the solar corona-solar wind combining system. J. Geophys. Res. 114, 7109.

    Article  Google Scholar 

  • Owens, M.J., Arge, C.N., Spence, H.E., Pembroke, A.: 2005, An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang–Sheeley–Arge model. J. Geophys. Res. 110, 12105.

    Article  Google Scholar 

  • Petrie, G.J.D., Patrikeeva, I.: 2009, A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys. J. 699, 871.

    Article  ADS  Google Scholar 

  • Pneuman, G.W., Hansen, S.F., Hansen, R.T.: 1978, On the reality of potential magnetic fields in the solar corona. Solar Phys. 59, 313.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510.

    Article  ADS  Google Scholar 

  • Riley, P., Mikic, Z., Lionello, R., Linker, J.A., Schwadron, N.A., McComas, D.J.: 2010, On the relationship between coronal heating, magnetic flux, and the density of the solar wind. J. Geophys. Res. 115, 6104.

    Article  Google Scholar 

  • Sanderson, T.R., Appourchaux, T., Hoeksema, J.T., Harvey, K.L.: 2003, Observations of the Sun’s magnetic field during the recent solar maximum. J. Geophys. Res. 108, 1035.

    Article  Google Scholar 

  • Schatten, K.: 2005, Fair space weather for solar cycle 24. Geophys. Res. Lett. 32, L21106.

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A.: 2008, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103.

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1.

    Article  ADS  Google Scholar 

  • Suzuki, T.K.: 2006, Forecasting solar wind speeds. Astrophys. J. 640, L75.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2010, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, 4102.

    Article  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Hayashi, K.: 2009, Non-dipolar solar wind structure observed in the cycle 23/24 minimum. Geophys. Res. Lett. 36, L09101.

    Article  Google Scholar 

  • Usmanov, A.V., Goldstein, M.L., Besser, B.P., Fritzer, J.M.: 2000, A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data. J. Geophys. Res. 105, 12675.

    Article  ADS  Google Scholar 

  • Wang, Y., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2003, Modeling the Sun’s large-scale magnetic field during the Maunder Minimum. Astrophys. J. 591(2), 1248.

    Article  ADS  Google Scholar 

  • Wang, Y., Lean, J., Sheeley, N.R. Jr.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505.

    Article  ADS  Google Scholar 

  • Wang, Y., Robbrecht, E., Sheeley, J.N.R.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372.

    Article  ADS  Google Scholar 

  • Wang, Y., Sheeley, N.R. Jr., Rich, N.B.: 2007, Coronal pseudostreamers. Astrophys. J. 658, 1340.

    Article  ADS  Google Scholar 

  • Wang, Y., Sheeley, N.R. Jr., Howard, R.A., Kraemer, J.R., Rich, N.B., Andrews, M.D., Brueckner, G.E., Dere, K.P., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Paswaters, S.E., Socker, D.G., Wang, D., Lamy, P.L., Llebaria, A., Vibert, D., Schwenn, R., Simnett, G.M.: 1997, Origin and evolution of coronal streamer structure during the 1996 minimum activity phase. Astrophys. J. 485, 875.

    Article  ADS  MATH  Google Scholar 

  • Wenzel, K.P., Marsden, R.G., Page, D.E., Smith, E.J.: 1992, The ULYSSES mission. Astron. Astrophys. Suppl. 92, 207.

    ADS  Google Scholar 

  • Zhao, X.P., Hoeksema, J.T., Liu, Y., Scherrer, P.H.: 2006, Success rate of predicting the heliospheric magnetic field polarity with Michelson Doppler Imager (MDI) synoptic charts. J. Geophys. Res. 111, A10108.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueshang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Feng, X., Xiang, C. et al. Simulation of the Unusual Solar Minimum with 3D SIP-CESE MHD Model by Comparison with Multi-Satellite Observations. Sol Phys 271, 91–110 (2011). https://doi.org/10.1007/s11207-011-9785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9785-7

Keywords

Navigation