Skip to main content

Abstract

Hot spring represents diversified microbial community due to its dynamic natural environment and varied geochemical parameters. Hot spring microbiome produced many novel thermostable enzymes which have enormous industrial as well as biotechnological applications. Moreover, studies on hot spring microbiomes could provide better knowledge about the origin and evolution of earliest life, as they are considered to be most similar to the microorganisms inhabiting the primitive Earth. They have been extensively studied throughout the world mainly by 16S rRNA-based clone libraries along with culture-based methods for discovery of novel thermozymes. These thermostable enzymes have several advantages as they are stable at high temperatures (above 60 °C), tolerate wide range of pH and have less chances of getting contaminated by common mesophilic microorganisms. In addition, thermostable enzymes have other advantages like solvent tolerance, substrate selectivity and stability. In this chapter, an attempt has been made to describe the major industrially important thermozymes like lipase, esterase, protease, cellulase, amylase and xylanase, mostly reported from bacteria and archaea through culturable as well as non-culturable approaches. Many thermophilic bacteria have also been shown to produce biosurfactants which can be a better and cheaper alternative to chemically synthesized ones and are being used in enhanced oil recovery, for controlling oil spills, and can also be used as sources of antibiotics against various food-borne pathogens. Majority of the microorganisms that thrive in hot springs are non-culturable. In this regard, metagenomics has enabled the discovery of novel thermozymes which find applications in biotechnological and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DW, Boraston AB (2008) Structural biology of pectin degradation by Enterobacteriaceae. Microbiol Mol Biol Rev 72:301–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aditiawati P, Yohandini H, Madayanti F, Akhmaloka (2009) Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, West Java-Indonesia. Open Microbiol J 3:58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akel H, Al-Quadan F, Yousef TK (2009) Characterization of a purified thermostable protease from hyperthermophilic Bacillus strain HUTBS71. Eur J Sci Res 31:280–288

    Google Scholar 

  • Al-Batayneh KM, Jacob JH, Hussein EI (2011) Isolation and molecular identification of new thermophilic bacterial strains of Geobacillus pallidus and Anoxybacillus flavithermus. Int J Integr Biol 11:39–43

    CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade CM, Aguiar WB, Antranikian G (2001) Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl Biochem Biotechnol 91:655–669

    Article  PubMed  Google Scholar 

  • Anthonsen HW, Baptista A, Drabløs F, Martel P, Petersen SB, Sebastião M, Vaz L (1995) Lipases and Esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev 1:315–371

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashwini K, Gaurav K, Karthik L, Bhaskara Rao RV (2011) Optimization, production and partial purification of extracellular α-amylase from Bacillus sp. marini. Arch Appl Sci Res 3:33–42

    CAS  Google Scholar 

  • Ateslier ZBB, Metin K (2005) Production and partial characterization of a novel thermostable esterase from a thermophilic Bacillus sp. Enzym Microb Technol 38:628–635

    Article  CAS  Google Scholar 

  • Bakir ZB, Metin K (2017) Production and characterization of an alkaline lipase from thermophilic Anoxybacillus sp. HBB16. Chem Biochem Eng Q 31:303–312

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Banat IM (1993) The isolation of thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594

    Article  CAS  Google Scholar 

  • Banerjee V, Saani K, Azmi W, Soni R (1999) Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry additive. Process Biochem 35:213–219

    Article  CAS  Google Scholar 

  • Barett AJ (1994) Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol 244:1–15

    Article  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    Article  CAS  PubMed  Google Scholar 

  • Bataillon M, Nunes CAP, Castillon N, Duchiron F (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzym Microb Technol 26:187–192

    Article  CAS  Google Scholar 

  • Bauer MW, Driskill LE, Kelly RM (1998) Glycosyl hydrolases from hyperthermophilic microorganisms. Curr Opin Biotechnol 9:141–145

    Article  CAS  PubMed  Google Scholar 

  • Becker P, Abu-Reesh I, Markossian S, Antranikian G, Markl H (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl Microbiol Biotechnol 48:184–190

    Article  CAS  PubMed  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Bertoldo C, Antranikian G (2001) Amylolytic enzymes from hyperthermophiles. Methods Enzymol 330:269–289

    Article  CAS  PubMed  Google Scholar 

  • Beynon RJ, Bond JS (1989) Proteolytic enzymes: a practical approach. IRL. Oxford University Press, p 259

    Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  PubMed  Google Scholar 

  • Blackebrough N, Birch G (1981) Enzymes of food processing. Applied Science Publishers, London

    Google Scholar 

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bora L, Bora M (2012) Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp. isolated from hot spring of Arunachal Pradesh, India. Braz J Microbiol 43:30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 733:1–9

    Google Scholar 

  • Bragger JM, Daniel RM, Coolbear T, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl Microbiol Biotechnol 31:55

    Google Scholar 

  • Brown SH, Kelly RM (1993) Characterization of Amylolytic Enzymes, Having Both alpha-1,4 and alpha-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol 59:2614–2621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155–186

    Article  CAS  PubMed  Google Scholar 

  • Bryant RS (1987) Potential uses of microorganisms in petroleum recovery technology. Proc Oklahoma Acad Sci 67:97–104

    Google Scholar 

  • Busscher HJ, Van der Kuijl-Booil M, Van der Mei HC (1996) Biosurfactants from thermophilic dairy Streptococci and their potential role in the fouling control heat exchanger plates. J Ind Microbiol Biotechnol 16:15–21

    CAS  Google Scholar 

  • Canganella F, Andrade CM, Antranikian G (1994) Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species. Appl Microbiol Biotechnol 42:239–245

    CAS  Google Scholar 

  • Chahiniana H, Sarda L (2009) Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161

    Article  Google Scholar 

  • Charbonneau DM, Meddeb-Mouelhi F, Beauregard M (2010) A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: Evidence for a new carboxylesterase family. J Biochem 148:299–308

    Article  CAS  PubMed  Google Scholar 

  • Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T (1995) Purification and Properties of Extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 61:1502–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colak A, Sisik D, Saglam N, Güner S, Canakci S, Belduz AO (2005) Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour Technol 96:625–631

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Sanchez Ade J, Hernandez-Sanchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168:22–32

    Article  PubMed  CAS  Google Scholar 

  • Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry – a review. J Food Eng 76:291–302

    Article  CAS  Google Scholar 

  • Cygler M, Schrag JD (1997) Structure as basis for understanding interfacial properties of lipases. Methods Enzymol 284:3–27

    Article  CAS  PubMed  Google Scholar 

  • De Martin L, Ebert C, Gardossi L, Linda P (2001) High isolate yields in thermolysin catalyzed synthesis of Z-L-aspartyl-L-phenylalanine methyl ester in toluene at controlled water activity. Tetrahedron Lett 42:3395–3397

    Article  Google Scholar 

  • Dong G, Vieille C, Savchenko A, Zeikus JG (1997) Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63:3569–3576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schroder C, Sahm K, Antranikian G (2014) Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • El-Gayar KE, Al-Abboud MA, Essa AMM (2017) Characterization of thermophilic bacteria Isolated from two hot springs in Jazan, Saudi Arabia. J Pure Appl Microbiol 11:743–752

    Article  CAS  Google Scholar 

  • Ellis JT, Magnuson TS (2012) Thermostable and alkali stable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. ISRN Microbiol ID: 517524:1–8

    Google Scholar 

  • Fakruddin M (2012) Biosurfactant: Production and Application. J Pet Environ Biotechnol 3:124

    Google Scholar 

  • Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P et al (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Fuciños P, Abadín CM, Sanromán A, Longo MA, Pastrana L, Rúa ML (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241

    Article  PubMed  CAS  Google Scholar 

  • Fuciños P, Atanes E, López-López O, Solaroli M, Cerdán ME, González-Siso MI et al (2014) Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochem 49:927–935

    Article  CAS  Google Scholar 

  • Fujiwara S (2002) Extremophiles: developments of their special functions and potential resources. J Biosci Bioeng 94:518–525

    Article  CAS  PubMed  Google Scholar 

  • Fukumori F, Kudo T, Horikoshi K (1985) Purification and properties of a cellulase from Alkalophilic Bacillus sp. No. 1139. J Gen Microbiol 131:3339–3345

    CAS  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol 99:4597–4602

    Article  CAS  PubMed  Google Scholar 

  • Gantelet H, Ladrat C, Godfroy A, Barbier G, Duchiron F (1998) Characteristics of pullulanases from extremely thermophilic archaea isolated from deep-sea hydrothermal vents. Biotechnol Lett 20:819–823

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Govind NS, Mehta B, Sharma M, Modi VV (1981) Protease and carotenogenesis in Blakeslea trispora. Phytochemistry 20:2483–2485

    Article  CAS  Google Scholar 

  • Gross RA, Kalra B, Kumar A (2001) Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Appl Microbiol Biotechnol 55:655–660

    Article  CAS  PubMed  Google Scholar 

  • Gudina EJ, Rocha V, Teixeira JA, Rodrigues LR (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50:419–424

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Gutarra MLE, Godoy MG, Maugeri F, Rodrigues MI, Freire DMG, Castilho LR (2009) Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol 100:5249–5254

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka K (2012) Incorporation of fluorous glycosides to cell membrane and saccharide chain elongation by cellular enzymes. Top Curr Chem 308:291–306

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Coutinho PM (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol 330:183–201

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Wang S, Dong H, Jiang H, Briggs BR et al (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8:53350

    Article  CAS  Google Scholar 

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

    Article  CAS  PubMed  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulose from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049

    CAS  Google Scholar 

  • Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629

    Article  CAS  PubMed  Google Scholar 

  • Inskeep WP, Jay ZJ, Tringe SG, Herrgard MJ, Rusch DB et al (2013) The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem. Front Microbiol 4:67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iulek J, Franco OL, Silva M, Slivinski CT, Bloch C Jr et al (2000) Purification, biochemical characterisation and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 32:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Ja’afaru MI (2013) Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol 2013:1–7

    Article  CAS  Google Scholar 

  • Jenneman GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983) A halotolerant biosurfactants producing Bacillus species potential useful for enhanced oil recovery. Dev Ind Microbiol 24:485–492

    CAS  Google Scholar 

  • Jiang Y, Xin F, Lu J, Dong W, Zhang W et al (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506

    Article  CAS  PubMed  Google Scholar 

  • Jyoti V, Narayan KD, Das SK (2010) Gulbenkiania indica sp. nov., isolated from a sulfur spring. Int J Syst Evol Microbiol 60:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Kandra L (2003) α-Amylases of medical and industrial importance. J Mol Struct THEOCHEM 666–667:487–498

    Article  CAS  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  • Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW (2006) Screening and characterization of a novel esterase from a metagenomic library. Protein Expr Purif 45:315–323

    Article  CAS  PubMed  Google Scholar 

  • Kim SB, Lee W, Ryu YW (2008) Cloning and characterization of thermostable esterase from Archaeoglobus fulgidus. J Microbiol 46:100–107

    Article  CAS  PubMed  Google Scholar 

  • Koch R, Zablowski P, Spreinat A, Antranikian G (1990) Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:21–26

    Article  CAS  Google Scholar 

  • Koeck DE, Hahnke S, Zverlov VV (2016) Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 66:4132–1437

    Article  CAS  PubMed  Google Scholar 

  • Konhauser KO, Jones B, Phoenix VR, Ferris G, Renaut RW (2004) The microbial role in hot spring silicification. Ambio 33:552–558

    Article  PubMed  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Lasa I, Berenguer J (1993) Thermophilic enzymes and their biotechnological potential. Microbiol SEM 9:77–89

    CAS  Google Scholar 

  • Lee DW, Koh YS, Kim KJ, Kim BC, Choi HJ, Kim DS, Suhartono MT, Pyun YR (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Kanai H, Kobayashi T, Akiba T, Kudo T (1996) Cloning, nucleotide sequence, and hyperexpression of α-amylase gene from an archaeon, Thermococcus profundus. J Ferment Bioeng 82:432–438

    Article  CAS  Google Scholar 

  • Lee JW, Park JY, Kwon M, Choi IG (2009) Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J Biosci Bioeng 107:33–37

    Article  CAS  PubMed  Google Scholar 

  • Lewin A, Wentzel A, Valla S (2013) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 24:516–525

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Xue Y, Fioroni M, Rodriguez-Ropero F, Zhou C et al (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–326

    Article  CAS  PubMed  Google Scholar 

  • López-López O, Cerdán ME, González-Siso MI (2013) Hot spring metagenomics. Life 3:308–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez G, Chow J, Bongen P, Lauinger B, Pietruszka J, Streit WR, Baena S (2014) A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Appl Microbiol Biotechnol 98:8603–8616

    Article  CAS  PubMed  Google Scholar 

  • Luna JM, Sarubbo LA, Campos-Takaki GM (2009) A new biosurfactant produced by Candida glabrata UCP1002: Characteristics of stability and application in oil recovery. Braz Arch Biol Technol 52:785–793

    Article  Google Scholar 

  • Madren D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  Google Scholar 

  • Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18:37–42

    Article  CAS  Google Scholar 

  • Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M (1998) Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem J 332:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh CL, Larsen DH (1953) Characterization of some thermophilic bacteria from the hot springs of Yellowstone National Park. J Bacteriol 65:193–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B (2000) Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol 83:177–187

    Article  CAS  PubMed  Google Scholar 

  • Mazar FM, Mohammadi HS, Ebrahimi-Rad M, Gregorian A, Omidinia E (2012) Isolation, purification and characterization of a thermophilic alkaline protease from Bacillus subtilis BP-36. J Sci 23:7–13

    CAS  Google Scholar 

  • Namsaraev ZB, Babasanova OB, Dunaevsky YE, Akimov VN, Barkhutova DD, Gorlenko VM, Namsaraev BB (2010) Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, Central Mongolia. Microbiology 79:491–499

    Article  CAS  Google Scholar 

  • Narayan KD, Pandey SK, Das SK (2010) Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 61:248–253

    Article  CAS  PubMed  Google Scholar 

  • Neveu J, Regeard C, DuBow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91:635–644

    Article  CAS  PubMed  Google Scholar 

  • Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Nigam P, Singh D (1995) Enzyme and microbial systems involved in starch processing. Enzym Microb Technol 17:770–778

    Article  CAS  Google Scholar 

  • Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci U S A 95:7018–7023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olajuyigbe FM, Kolawale AO (2011) Purification and partial characterization of a thermostable alkaline protease from Bacillus licheniformis LHSB-05 isolated from hot spring. Afr J Biotechnol 10:11703–11710

    CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Parkkinen T, Koivula A, Vehmaanpera J, Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paula S, Alexandra M, Jose C, Maria R, Maria C (2002) Rapid detection of thermostable cellulase free xylanases by a strain of Bacillus subtilis and its properties. Enzym Microb Technol 30:924–933

    Article  Google Scholar 

  • Prade RA (1995) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:100–131

    Google Scholar 

  • Pyaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Pet Sci Eng 50:71–77

    Article  CAS  Google Scholar 

  • Rathi P, Sapna B, Sexena R, Gupta R (2000) A hyperthermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol Lett 22:495–498

    Article  CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G et al (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    Article  CAS  PubMed  Google Scholar 

  • Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahm K, John P, Nacke H, Wemheuer B, Grote R et al (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662

    Article  CAS  PubMed  Google Scholar 

  • Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salihu A, Alam MZ (2014) Thermostable lipase: an overview of production, purification and characterization. Biotechnol Res Asia 11:1095–1107

    Article  Google Scholar 

  • Shariff FM, Rahman RNZRA, Basri M, Salleh (2011) ABA newly isolated thermostable lipase from Bacillussp. Int J Mol Sci 2:2917–2934

    Article  CAS  Google Scholar 

  • Sharma D Singh SB (2014). Simultaneous production of biosurfactants and bacteriocins by Probiotic Lactobacillus casei MRTL3. Int J Microbiol ID: 698713. https://doi.org/10.1155/2014/698713

    Article  CAS  Google Scholar 

  • Sharma PK, Singh K, Singh R, Capalash N, Ali A, Mohammad O, Kaur J (2012) Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Mol Biol Rep 39:2795–2804

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Soni S, Vohra R, Gupta L, Gupta J (2002) Purification and characterization of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084

    Article  CAS  Google Scholar 

  • Singh R, Chopra C, Gupta VK, Akhlaq B, Verma V, Rasool S (2015) Purification and characterization of CHpro1, a thermotolerant, alkali-stable and oxidation-resisting protease of Chumathang hotspring. Sci Bull 60:1252–1260

    Article  CAS  Google Scholar 

  • Singh R, Dhawan S, Singh K, Kaur J (2012) Cloning, expression and characterization of a metagenome derived thermoactive/thermostable pectinase. Mol Biol Rep 39:8353–8361

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Pandey VC, Agrawal S (2013) Potential of Laceyella sacchari strain B42 crude xylanase in biobleaching of kraft pulp. Afr J Biotechnol 12:570–579

    CAS  Google Scholar 

  • Suzuki Y, Miyamoto K, Ohta H (2004) A novel thermostable esterase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. FEMS Microbiol Lett 236:97–102

    Article  CAS  PubMed  Google Scholar 

  • Synowiecki J (2008). Thermostable enzymes in food processing. In: Recent research developments in food biotechnology, Enzymes as additives or processing aids. Research Signpost, Trivandrum

    Google Scholar 

  • Takagi H, Takahashi T, Momose H, Inouye M, Maeda I, Matsuzawa H, Ohta T (1990) Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem 265:6874–6878

    CAS  PubMed  Google Scholar 

  • Tanyildizi MS, Özer D, Elibol M (2007) Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochem Eng J 37:294–297

    Article  CAS  Google Scholar 

  • Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405

    Article  CAS  PubMed  Google Scholar 

  • Teplitsky A, Shulami S, Moryles S, Shoham Y, Shoham G (2000) Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus T-6. Acta Crystallogr Sect D: Biol Crystallogr 56:181–184

    Article  CAS  Google Scholar 

  • Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49

    Article  CAS  PubMed  Google Scholar 

  • Trebbau de-Acevedo G, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol Biotechnol 16:1–7

    CAS  Google Scholar 

  • Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol Adv 33:633–647

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Cummings RD, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (1999) Essentials of glycobiology. Cold Spring Harbour J. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Verma D, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8(1):e52459: 1–8

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015) Hydrolytic enzyme production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 Isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145

    CAS  PubMed  Google Scholar 

  • Vlasenko E, Schulein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  CAS  PubMed  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36

    Article  CAS  PubMed  Google Scholar 

  • Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43

    Article  CAS  PubMed  Google Scholar 

  • Wagner ID, Zhao W, Zhang CL, Romanek CS, Rohde M, Wiegel J (2008) Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia. Int J Syst Evol Microbiol 58:2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Waino M, Ingvorsen K (2003) Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93

    Article  CAS  PubMed  Google Scholar 

  • Walia A, Mehta P, Chauhan A, Kulshrestha S, Shirkot CK (2014) Purification and characterization of cellulase-free low molecular weight endo beta-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost. World J Microbiol Biotechnol 30:2597–2608

    Article  CAS  PubMed  Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2013) Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol 63:187–198

    Article  CAS  Google Scholar 

  • Wang SD, Guo GS, Li L, Cao LC, Tong L, Ren GH et al (2014) Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library. Enzym Microb Technol 57:26–35

    Article  CAS  Google Scholar 

  • Wang B, Lu D, Gao R, Yang Z, Cao S, Feng Y (2004) A novel phospholipase A2/esterase from hyperthermophilic archaeon Aeropyrum pernix K1. Protein Expr Purif 35:199–205

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hotspring Cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Archaea 2013:136714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woldesenbet F, Virk AP, Gupta N, Sharma P (2012) Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp. Appl Biochem Biotechnol 167:100–108

    Article  CAS  PubMed  Google Scholar 

  • Wood AN, Fernandez-Lafuente R, Cowan DA (1995) Purification and partial characterization of a novel thermophilic carboxylesterase with high mesophilic specific activity. Enzym Microb Technol 17:816–825

    Article  CAS  Google Scholar 

  • Yan F, Yong-Goe J, Kazuhiko I, Hiroyasu I, Susumu A, Tohru Y, Hiroshi N, Shugui C, Ikuo M, Yoshitsugu K (2000) Thermophilic phospholipase A2 in the cytosolic fraction from the archaeon Pyrococcus horikoshii. J Am Oil Chem Soc 77:1075–1084

    Google Scholar 

  • Yang CH, Liu WH (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzym Microb Technol 35(2):254–260

    Article  CAS  Google Scholar 

  • Yao C, Cao Y, Wu S, Li S, He B (2013) An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: Purification, characteristics and application for chiral resolution of mandelic acid. J Mol Catal B Enzym 85/86:105–110

    Article  CAS  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611–618

    Article  CAS  PubMed  Google Scholar 

  • Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng YY, Guo XH, Song NN, Li DC (2011) Thermophilic lipase from Thermomyces lanuginosus: Gene cloning, expression and characterization. J Mol Catal B Enzym 69:127–132

    Article  CAS  Google Scholar 

  • Zhu Y, Li J, Cai H, Ni H, Xiao A, Hou L (2013) Characterization of a new and thermostable esterase from a metagenomic library. Microbiol Res 168:589–597

    Article  CAS  PubMed  Google Scholar 

  • Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debnath, T., Kujur, R.R.A., Mitra, R., Das, S.K. (2019). Diversity of Microbes in Hot Springs and Their Sustainable Use. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_6

Download citation

Publish with us

Policies and ethics