Skip to main content

Recent Advances in Cellulose Chemistry and Potential Applications

  • Chapter
  • First Online:
Production of Materials from Sustainable Biomass Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 9))

Abstract

Cellulose, which is the most abundant organic compound of natural origin, has wide application in technical and biomedical fields. Cellulose can be chemically derivatized in to cellulose intermediates, such as cellulose tosylate or carbonates. The synthesised intermediates can be further transformed into cellulose derivatives of biological interest, for instance, amino cellulose. The reaction parameters such as homogeneous/heterogeneous mode, molar ratio of reagent, temperature, and solvent affects the efficiency of derivatization, substitution pattern and the physicochemical properties of the final product obtained. Derivatized cellulose has been applied to advanced materials for diagnostics and biomedical areas in the form of fibres, nanoparticles microbeads. This chapter provides an integrated overview on cellulose derivatization approaches and advanced material design that can be obtained from cellulose derivatives and which have potential application in biomedical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  2. Request (2014) Cellulose fibers market analysis, market size, application analysis, regional outlook, competitive strategies and forecasts, 2012 to 2020

    Google Scholar 

  3. Heinze T, Liebert T, Koschella A, Liebert T, Koschella A, Heinze T (2006) Esterification of polysaccharides with 105 tables, and CD-ROM. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, Berlin

    Google Scholar 

  4. Hesse G, Hagel R (1976) Die chromatographische Racemattrennung. Justus Liebigs Ann Chem 1976(6):996–1008

    Article  Google Scholar 

  5. Ichida A, Shibata T, Okamoto I, Yuki Y, Namikoshi H, Toga Y (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19(1):280–284

    Article  CAS  Google Scholar 

  6. Shen J, Okamoto Y (2016) Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev 116:1094–1138

    Article  CAS  Google Scholar 

  7. Fraczyk J (2013) Cellulose functionalysed with grafted oligopeptides. In: Cellulose – medical, pharmaceutical and electronic applications. InTech, Rijeka, pp 241–278

    Google Scholar 

  8. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–203

    Article  Google Scholar 

  9. O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for Cellobiose in aqueous solution. PLoS One 7:e45311

    Article  Google Scholar 

  10. Kennedy JF, Pons RJS (1995) Cellulose: structure, accessibility and reactivity. Carbohydr Polym 26:313–314

    Google Scholar 

  11. Comprehensive cellulose chemistry (1998) Volume 1. Fundamentals and analytical methods by D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht. Wiley, Weinheim. 260 pp. $236.25. ISBN 3-527-29413-9. J Am Chem Soc. 121(1999):8677–8677

    Google Scholar 

  12. Wertz J-L, Mercier JP, Bédué O, Bedue O (2010) Cellulose science and technology. Taylor & Francis, USA

    Google Scholar 

  13. Sixta H (2008). Handbook of pulp. Wiley-VCH Verlag GmbH. pp 2–19

    Google Scholar 

  14. Heinze T, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulosep-toluenesulfonates. J Appl Polym Sci 60:1891–1900

    Article  CAS  Google Scholar 

  15. Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T (2012) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 89:526–536

    Article  CAS  Google Scholar 

  16. Heinze T (2005) Polysaccharides: structure, characterisation and use: V. 1. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, Berlin. pp 107–109

    Google Scholar 

  17. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2, 3-Dialdehyde cellulose beads via Periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932

    Article  CAS  Google Scholar 

  18. Lindh J, Ruan C, Strømme M, Mihranyan A (2016) Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir 32:5600–5607

    Article  CAS  Google Scholar 

  19. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836

    Article  CAS  Google Scholar 

  20. Zhou X, Lin X, White KL, Lin S, Wu H, Cao S et al (2016) Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23:811–821

    Article  CAS  Google Scholar 

  21. Heinze T, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60:1891–1900

    Article  CAS  Google Scholar 

  22. Schmidt S, Liebert T, Heinze T (2014) Synthesis of soluble cellulose tosylates in an eco-friendly medium. Green Chem 16:1941–1946

    Article  CAS  Google Scholar 

  23. Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  24. Doane WM, Shasha BS, Stout EI, Russell CR, Rist CE (1968) Reaction of starch with carbohydrate trans-carbonates. Carbohydr Res 8:266–274

    Article  CAS  Google Scholar 

  25. Barker SA, Cho Tun H, Doss SH, Gray CJ, Kennedy JF (1971) Carbohydr Res 17:471

    Article  CAS  Google Scholar 

  26. Barker SA, Cho Tun H, Doss SH, Gray CJ, Kennedy JF (1971) Preparation of cellulose carbonate. Carbohydr Res 17:471–474

    Article  CAS  Google Scholar 

  27. Kennedy JF, Tun HC (1973) Active insolubilized antibiotics based on cellulose and cellulose carbonate. Antimicrob Agents Chemother 3:575–579

    Article  CAS  Google Scholar 

  28. Kennedy JF, Cho Tun H (1973) Use of cellulose carbonate for the preparation of immunosorbents: the radioimmunoassay of follicle-stimulating hormone. Carbohydr Res 30:11–19

    Article  CAS  Google Scholar 

  29. Kennedy JF, Keep PA, Catty D (1982) The use of cellulose carbonate-based immunoadsorbents in the isolation of minor allotypic components of rabbit immunoglobulin populations. J Immunol Methods 50:57–75

    Article  CAS  Google Scholar 

  30. Elschner T, Heinze T (2015) Cellulose carbonates: a platform for promising biopolymer derivatives with multifunctional capabilities. Macromol Biosci 15:735–746

    Article  CAS  Google Scholar 

  31. Elschner T, Kötteritzsch M, Heinze T (2013) Synthesis of cellulose tricarbonates in 1-Butyl-3-methylimidazolium chloride/pyridine. Macromol Biosci 14:161–165

    Article  Google Scholar 

  32. Elschner T, Ganske K, Heinze T (2012) Synthesis and aminolysis of polysaccharide carbonates. Cellulose 20:339–353

    Article  Google Scholar 

  33. Elschner T, Heinze T (2014) A promising cellulose-based polyzwitterion with pH-sensitive charges. Beilstein J Org Chem 10:1549–1556

    Article  Google Scholar 

  34. Petzold-Welcke K, Michaelis N, Heinze T (2009) Unconventional cellulose products through nucleophilic displacement reactions. Macromol Symp 280:72–85

    Article  CAS  Google Scholar 

  35. Jung A, Berlin P (2005) New water-soluble and film-forming amino cellulose tosylates as enzyme support matrices with Cu 21 -chelating properties. Cellulose 12:67–84

    Article  CAS  Google Scholar 

  36. Nikolajski M, Adams GG, Gillis RB, Besong DT, Rowe AJ, Heinze T et al (2014) Protein–like fully reversible tetramerisation and super-association of an amino cellulose. Sci Rep 4:3861

    Article  Google Scholar 

  37. Heinze T, Nikolajski M, Daus S, Besong TMD, Michaelis N, Berlin P et al (2011) Protein-like oligomerization of carbohydrates. Angew Chem Int Ed 50:8602–8604

    Article  CAS  Google Scholar 

  38. Elschner T, Scholz F, Miethe P, Heinze T (2014) Rapid flow through immunoassay for CRP determination based on polyethylene filters modified with ω -amino cellulose carbamate. Macromol Biosci 14:1539–1546

    Article  CAS  Google Scholar 

  39. Ganske K, Wiegand C, Hipler U-C, Heinze T (2015) Synthesis of novel cellulose carbamates possessing terminal amino groups and their bioactivity. Macromol Biosci 16:451–461

    Article  Google Scholar 

  40. Heinze T, Koschella A, Brackhagen M, Engelhardt J, Nachtkamp K (2006) Studies on non-natural deoxyammonium cellulose. Macromol Symp 244:74–82

    Article  CAS  Google Scholar 

  41. Bretschneider L, Koschella A, Heinze T (2014) Cationically modified 6-deoxy-6-azido cellulose as a water-soluble and reactive biopolymer derivative. Polym Bull 72:473–485

    Article  Google Scholar 

  42. Zarth CSP, Koschella A, Pfeifer A, Dorn S, Heinze T (2011) Synthesis and characterization of novel amino cellulose esters. Cellulose 18:1315–1325

    Article  CAS  Google Scholar 

  43. Obst M, Heinze T (2015) Simple synthesis of reactive and nanostructure forming hydrophobic amino cellulose derivatives. Macromol Mater Eng 301:65–70

    Article  Google Scholar 

  44. Heinze T, Pfeifer A, Koschella A, Schaller J, Meister F (2016) Solvent-free synthesis of 6-deoxy-6-(ω-aminoalkyl)amino cellulose. J Appl Polym Sci 133:43987

    Article  Google Scholar 

  45. Wondraczek H, Petzold-Welcke K, Fardim P, Heinze T (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760

    Article  CAS  Google Scholar 

  46. Schulze P, Gericke M, Scholz F, Wondraczek H, Miethe P, Heinze T (2016) Incorporation of hydrophobic dyes within cellulose acetate and acetate phthalate based nanoparticles. Macromol Chem Phys 217:1823–1833

    Article  CAS  Google Scholar 

  47. Wiegand C, Nikolajski M, Hipler U-C, Heinze T (2015) Nanoparticle formulation of AEA and BAEA cellulose carbamates increases biocompatibility and antimicrobial activity. Macromol Biosci 15:1242–1251

    Article  CAS  Google Scholar 

  48. Elschner T, Doliška A, Bračič M, Stana-Kleinschek K, Heinze T (2015) Film formation of ω-aminoalkylcellulose carbamates – a quartz crystal microbalance (QCM) study. Carbohydr Polym 116:111–116

    Article  CAS  Google Scholar 

  49. Zieger M, Wurlitzer M, Wiegand C, Reddersen K, Finger S, Elsner P et al (2015) 6-Deoxy-6-aminoethyleneamino cellulose: synthesis and study of hemocompatibility. J Biomater Sci Polym Ed 26:931–946

    Article  CAS  Google Scholar 

  50. Francesko A, Fernandes MM, Ivanova K, Amorim S, Reis RL, Pashkuleva I et al (2016) Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater 33:203–212

    Article  CAS  Google Scholar 

  51. http://www.dcndx.com/product-detail/cellulose-nanobeads

  52. Heinze T, Siebert M, Berlin P, Koschella A (2015) Biofunctional materials based on amino cellulose derivatives – a nanobiotechnological concept. Macromol Biosci 16:10–42

    Article  Google Scholar 

  53. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  54. Hirota M, Tamura N, Saito T, Isogai A (2009) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335

    Article  CAS  Google Scholar 

  55. de Carvalho RA, Veronese G, Carvalho AJF, Barbu E, Amaral AC, Trovatti E (2016) The potential of tEMPO-oxidized nanofibrillar cellulose beads for cell delivery applications. Cellulose 23:3399–3405

    Article  Google Scholar 

  56. Weishaupt R, Siqueira G, Schubert M, Tingaut P, Maniura-Weber K, Zimmermann T et al (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromolecules 16:3640–3650

    Article  CAS  Google Scholar 

  57. Han S, Lee M, Kim BK (2010) Crosslinking reactions of oxidized cellulose fiber. I. Reactions between dialdehyde cellulose and multifunctional amines on lyocell fabric. J Appl Polym Sci 117:682–690

    Article  CAS  Google Scholar 

  58. Heinze T, Genco T, Petzold-Welcke K, Wondraczek H (2012) Synthesis and characterization of amino cellulose sulfates as novel ampholytic polymers. Cellulose 19:1305–1313

    Article  CAS  Google Scholar 

  59. Elschner T, Lüdecke C, Kalden D, Roth M, Löffler B, Jandt KD et al (2015) Zwitterionic cellulose carbamate with regioselective substitution pattern: a coating material possessing antimicrobial activity. Macromol Biosci 16:522–534

    Article  Google Scholar 

  60. Trivedi P, Trygg J, Saloranta T, Fardim P (2016) Synthesis of novel zwitterionic cellulose beads by oxidation and coupling chemistry in water. Cellulose 23:1751–1761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Fardim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trivedi, P., Fardim, P. (2019). Recent Advances in Cellulose Chemistry and Potential Applications. In: Fang, Z., Smith, Jr, R., Tian, XF. (eds) Production of Materials from Sustainable Biomass Resources . Biofuels and Biorefineries, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-13-3768-0_4

Download citation

Publish with us

Policies and ethics