Skip to main content

Reactive Oxygen Species Production and Scavenging During Seed Germination of Halophytes

  • Chapter
  • First Online:
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

Reactive oxygen species (ROS) are excited or partially reduced forms of atmospheric oxygen, which are continuously produced during aerobic metabolism like many physiochemical processes operating throughout seeds’ life. ROS were previously known merely as cytotoxic molecules, but now it has been established that when tightly regulated to low levels they perform numerous beneficial functions in plants including many critical roles in seed physiology. This ROS homeostasis is achieved owing to the presence of a well-coordinated antioxidant system, which is composed of many enzymatic and nonenzymatic components. ROS reportedly facilitate seed germination via cell wall loosening, endosperm weakening, signaling, and/or decreasing abscisic acid levels. Most of the existing knowledge about ROS homeostasis and functions is based on the seeds of crops and model plants. This information about the seeds of non-crops such as halophytes is limited to just a few studies. Furthermore, mechanisms underlying ROS functions such as downstream targets, cross talk with other molecules, and alternative routes are still obscure. The objective of this article is to present an overview about (i) general mechanisms of ROS homeostasis in plants, (ii) ROS homeostasis in dry seeds, (iii) ROS metabolism in germinating seeds under optimal conditions, and (iv) ROS flux in germinating seeds under stress conditions with special emphasis on halophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OH:

Hydroxyl radical

ABA:

Abscisic acid

AOI:

Active oxygen intermediates

AOS:

Active oxygen species

APX:

Ascorbate peroxidase

AsA:

Ascorbate

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GPOX:

Guaiacol peroxidase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferases

H2O2 :

Hydrogen peroxide

MDAR:

Monodehydroascorbate reductase

NaCl:

Sodium chloride

NADPH:

Nicotinamide adenine dinucleotide phosphate

O2 :

Superoxide radical

O2 :

Oxygen

1O2 :

Singlet oxygen

POD:

Peroxidase

Prx:

Thiol peroxidase type II peroxiredoxin

ROI:

Reactive oxygen intermediates

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Amooaghaie R, Ahmadi F (2017) Triangular interplay between ROS, ABA and GA in dormancy alleviation of Bunium persicum seeds by cold stratification. Russ J Plant Physiol 64(4):588–599

    Article  CAS  Google Scholar 

  • Anbar AD, Duan Y, LyonsTW AGL, Kendall B et al (2007) A whiff of oxygen before the great oxidation event? Science 317(5846):1903–1906

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA et al (2016) Catalase and ascorbate peroxidase representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23(19):19002–19029

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arabaci G (2011) Partial purification and some properties of catalase from dill (Anethum graveolens L.). J Biol Life Sci 2(1):11–15

    Google Scholar 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ 34(6):980–993

    Article  CAS  PubMed  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14(2):93–107

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Côme D (2000) Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci Res 10(1):35–42

    Article  CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331(10):806–814

    Article  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signaling. J Exp Bot 65(5):1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (1994) Dormancy and the control of germination. In: Seeds. Springer, Boston. pp 199–271

    Chapter  Google Scholar 

  • Bogdanović J, Radotić K, Mitrović A (2008) Changes in activities of antioxidant enzymes during Chenopodium murale seed germination. Biol Plant 52(2):396

    Article  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bykova NV, Hu J, Ma Z, Igamberdiev AU (2015) The role of reactive oxygen and nitrogen species in bioenergetics, metabolism, and signaling during seed germination. In: Reactive oxygen and nitrogen species signaling and communication in plants. Springer, Cham. pp 177–195

    Google Scholar 

  • Canvin DT (1990) Photorespiration and CO2-concentrating mechanism. In: Plant physiol biochem mol biol. pp 253–273

    Google Scholar 

  • Cembrowska-Lech D, Koprowski M, Kępczyński J (2015) Germination induction of dormant Avenafatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2 ) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J Plant Physiol 176:169–179

    Article  CAS  PubMed  Google Scholar 

  • Chai YY, Jiang CD, Shi L, Shi TS, Gu WB (2010) Effects of exogenous spermine on sweet sorghum during germination under salinity. Biol Plant 54(1):145–148

    Article  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20(5):579–588

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci 180(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62(3):241–255

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM (1992) Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry seeds. In: Water and life. Springer, Berlin. pp 97–103

    Chapter  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411(6839):826

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2(53):1–13

    CAS  Google Scholar 

  • De Tullio MC, Arrigoni O (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13(4):249–260

    Article  CAS  Google Scholar 

  • De Tullio MC, Paciolla C, Dalla Vecchia F, Rascio N, D’Emerico S et al (1999) Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. Planta 209(4):424–434

    Article  PubMed  Google Scholar 

  • Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50(3):319–375

    Article  CAS  PubMed  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66(10):2827–2837

    Article  PubMed  CAS  Google Scholar 

  • Del Río LA, Ortega MG, López AL, Gorgé JL (1977) A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Anal Biochem 80(2):409–415

    Article  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32(10):1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Donà M, Balestrazzi A, Mondoni A, Rossi G, Ventura L et al (2013) DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity. Ann Bot 111(5):987–998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dučić T, Lirić-Rajlić I, Mitrović A, Radotić K (2003) Activities of antioxidant systems during germination of Chenopodium rubrum seeds. Biol Plant 47(4):527–533

    Article  Google Scholar 

  • Eising R, Süselbeck B (1991) Turnover of catalase heme and apoprotein moieties in cotyledons of sunflower seedlings. Plant Physiol 97(4):1422–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142(2):128–143

    Article  CAS  PubMed  Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3(3):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61(6):1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11(4):861–905

    Article  CAS  PubMed  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141(2):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gara L, Pinto MD, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100(4):894–900

    Article  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28(11):1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease. Plant Physiol 124(1):21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Gutteridge J, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci 899(1):136–147

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hameed A, Rasheed A, Gul B, Khan MA (2014) Salinity inhibits seed germination of perennial halophytes Limonium stocksii and Suaeda fruticosa by reducing water uptake and ascorbate dependent antioxidant system. Environ Exp Bot 107:32–38

    Article  CAS  Google Scholar 

  • Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants. https://doi.org/10.1093/aobpla/plv004

  • Hilhorst HW (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5(2):61–73

    Article  CAS  Google Scholar 

  • Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R (2016) The evolution of reactive oxygen species metabolism. J Exp Bot 67(21):5933–5943

    Article  CAS  PubMed  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158

    Article  Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57(3):231–245

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, Del Rıo LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118(4):1327–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85(3):237

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Gul B (2006) Halophyte seed germination. In: Ecophysiology of high salinity tolerant plants. Springer, Dordrecht. pp 11–30

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH (2001) The Haber-Weiss cycle – 70 years later. Redox Rep 6(4):229–234

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Seal CE (2013) Salt stress, signalling and redox control in seeds. Funct Plant Biol 40(9):848–859

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010a) What is stress? Concepts, definitions and applications in seed science. New Phytol 188(3):655–673

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV (2010b) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167(10):805–811

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Prasad RSPS, Banerjee R, Thammineni C (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116(4):663–668

    Article  CAS  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188(2):626–637

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79(4):583–593

    Article  CAS  PubMed  Google Scholar 

  • Matilla A, Gallardo M, Puga-Hermida MI (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci Res 15(2):63–76

    Article  CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • McDonald AE, Vanlerberghe GC (2004) Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla. IUBMB Life 56(6):333–341

    Article  CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB et al (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signaling–specificity is required. Trends Plant Sci 15(7):370–374

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Müller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A et al (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150(4):1855–1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müntz K (1982) Seed development. In: nucleic acids and proteins in plants. Springer, Berlin, pp 505–558

    Book  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279

    Article  CAS  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination-still a mystery. Plant Sci 179(6):574–581

    Article  CAS  Google Scholar 

  • Oracz K, Bouteau HEM, Farrant JM, Cooper K, Belghazi M et al (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50(3):452–465

    Article  CAS  PubMed  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defense in halophytes. Funct Plant Biol 40(9):832–847

    Article  CAS  PubMed  Google Scholar 

  • Panta S, Flowers T, Lane P, Doyle R, Haros G et al (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:plu047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parida AK, Jha B (2010) Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. J Plant Growth Regul 29(2):137–148

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161(5):531–542

    Article  CAS  PubMed  Google Scholar 

  • Pehlivan FE (2017) Free radicals and antioxidant system in seed biology. In: Advances in seed biology. InTech

    Google Scholar 

  • Pergo ÉM, Ishii-Iwamoto EL (2011) Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allele-chemicals. J Chem Ecol 37(5):500–513

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro DT, Silva ALD, Silva LJD, Sekita MC, Dias D (2016) Germination and antioxidant action in melon seeds exposed to salt stress. Pesqui Agropecu Trop 46(3):336–342

    Article  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331(10):796–805

    Article  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hameed A, Khan MA, Gul B (2016) Variation in temperature and light but not salinity invokes antioxidant enzyme activities in germinating seeds of Salsola drummondii. Plant Biosyst 150(5):1072–1082

    Article  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts EH (1973) Oxidative processes and the control of seed germination. In: Seed ecology. Butterworths, London. pp 189–218

    Google Scholar 

  • Scandalios JG (1990) Response of plant antioxidant defense genes to environmental stress. In: Advances in genetics. Academic Press. pp 1–41

    Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125(4):1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seal CE, Zammit R, Scott P, Flowers TJ, Kranner I (2010) Glutathione half-cell reduction potential and α-tocopherol as viability markers during the prolonged storage of Suaeda maritima seeds. Seed Sci Res 20(1):47–53

    Article  CAS  Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (Sea Barley grass) and Hordeum vulgare L. (cultivated Barley). Environ Exp Bot 69(1):76–85

    Article  CAS  Google Scholar 

  • Shabala S (2017) Signalling by potassium: another second messenger to add to the list? J Exp Bot 68(15):4003–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8):852–870

    Article  CAS  PubMed  Google Scholar 

  • Shugaev AG, Lashtabega DA, Shugaeva NA, Vyskrebentseva EI (2011) Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots. Russ J Plant Physiol 58(3):387–393

    Article  CAS  Google Scholar 

  • Ślesak I, Ślesak H, Kruk J (2012) Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways. Astrobiology 12(8):775–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soundararajan P, Manivannan A, Jeong BR (2016) Signaling patterns of reactive oxygen species and phytohormones during transition period of quiescent seeds into metabolically active organisms. In: Araújo S (ed) New challenges in seed biology-basic and translational research driving seed technology. InTech, Rijeka, pp 75–95

    Google Scholar 

  • Spragg SP, Lievesley PM, Wilson KM (1962) The relationship between glutathione and protein sulphydryl groups in germinating pea seeds. Biochem J 83(2):314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S et al (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9(1):e84426. https://doi.org/10.1371/journal.pone.0084426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, Gara LD (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinuspinea L. seeds. J Exp Bot 52(361):1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Turkan I (2017) Emerging roles for ROS and RNS–versatile molecules in plants. J Exp Bot 68(16):4413–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varghese B, Naithani SC (2008) Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds. J Plant Physiol 165(7):755–765

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Heimovaara-Dijkstra S, Van Duijn B (1995) Modulation of germination of embryos isolated from dormant and non-dormant barley grains by manipulation of endogenous abscisic acid. Planta 195(4):586–592

    Article  CAS  Google Scholar 

  • Wang M, Van der Meulen RM, Visser K, Van Schaik HP, Van Duijn B et al (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8(2):129–137

    Article  CAS  Google Scholar 

  • Wang X, Zhao G, Gu H (2009) Physiological and antioxidant responses of three leguminous species to saline environment during seed germination stage. Afr J Biotechnol 8(21):5773–5779

    CAS  Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62(10):3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1(3):207–228

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16(16):4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhu S, Jiang Y, Wang N, Wang R et al (2013) Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 370(1–2):47–57

    Article  CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M (2013) Sphaerophysa kotschyana, an endemic species from Central Anatolia: antioxidant system responses under salt stress. J Plant Res 126(5):729–742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasheed, A., Rasool, S.G., Gul, B., Ajmal Khan, M., Hameed, A. (2019). Reactive Oxygen Species Production and Scavenging During Seed Germination of Halophytes. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_4

Download citation

Publish with us

Policies and ethics