Skip to main content

Enzymes in Sweeteners Production

  • Chapter
  • First Online:
Green Bio-processes

Abstract

The eco-friendly and highly specific nature of enzymes has made these biocatalysts widely used in the production of sweeteners. Traditionally, their application is mostly associated with the production of starch-derived high-calorie sugars, and at a minor scale, to the production of invert sugar syrup. Such pattern still stands, albeit with significant developments toward improved biocatalysts for those roles. These improvements have involved several approaches such as enzyme screening/modification through genetic or chemical approaches, and enhanced enzyme formulations. Additionally, in recent years, the public perception on the impact of diet in public health has established the need for alternative low-calorie sweeteners. These abridge a diversity of compounds, from high-intensity sweeteners to oligosaccharides with low sweetening power but with a prebiotic role. The present work aims to provide an updated overview of the current enzyme-based processes in the production of sweeteners. The rationale underlying the enzymatic approaches as preferred alternative to chemical routes is addressed. Specific insight is given on the operational conditions implemented in the enzymatic processes and on biocatalyst development, while also providing the scope for the different types of sweeteners manufactured enzymatically. The key issues on industrial scale sweetener production are discussed. Finally, foreseen developments in the field are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acer Ö, Bekler FM, Pirinççioğlu H, Güven RG, Güven K (2016) Purification and characterization of thermostable and detergent-stable α-amylase from Anoxybacillus sp. AH1. Food Technol Biotechnol 54:70–77

    Google Scholar 

  • Adari BR, Alavala S, George SA, Meshram HM, Tiwari AK, Sarma AV (2016) Synthesis of rebaudioside-A by enzymatic transglycosylation of stevioside present in the leaves of Stevia rebaudiana Bertoni. Food Chem 200:154–158

    Article  CAS  PubMed  Google Scholar 

  • Adrio J-L, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1:116–131

    Article  PubMed  Google Scholar 

  • Ajita S, Thirupathihalli M (2014) α-amylase production and applications: a review. J Appl Environ Microbiol 2:166–175

    Google Scholar 

  • Arnold FH (2018) Directed evolution: bringing new chemistry to life. Angew Chem Int Ed 57:4143–4148

    Article  CAS  Google Scholar 

  • Asgher M, Asad MJ, Rahman SU, Legge RL (2007) A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 79:950–955

    Article  CAS  Google Scholar 

  • Beerens K, Desmet T, Soetaert W (2012) Enzymes for the biocatalytic production of rare sugars. J Ind Microbiol Biotechnol 39:823–834

    Article  CAS  PubMed  Google Scholar 

  • Berini F, Casciello C, Marcone GL, Marinelli F (2017) Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 364, fnx211

    Google Scholar 

  • Birrane G, Bhyravbhatla B, Navia MA (2014) Synthesis of aspartame by thermolysin: a X-ray structural study. ACS Med Chem Lett 5:706–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonchuay P, Techapun C, Seesuriyachan P, Chaiyaso T (2014) Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Sci Biotechnol 23:1515–1523

    Article  CAS  Google Scholar 

  • Bunge J, Willis A, Walsh F (2014) Estimating the number of species in microbial diversity studies. Ann Rev Stat Appl 1:427–445

    Article  Google Scholar 

  • Carocho M, Morales P, Ferreira ICFR (2014) Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food Chem Toxicol 107(Pt A):302–317

    Google Scholar 

  • Carvalho RV, Côrrea TLR, Silva JCM, de Oliveira Mansur LR, Martins ML (2008) Properties of an amylase from thermophilic Bacillus sp. Braz J Microbiol 39:102–107

    Google Scholar 

  • Chakravarty S, Varadarajan R (2002) Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 41:8152–8161

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Bhattacharyya BK, Sem SK (2000) Purification and characterization of a thermostable alpha-amylase from Bacillus stearothermophilus. Folia Microbiol (Praha) 45:207–210

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners—a review. J Food Sci Technol 51:611–621

    Article  CAS  PubMed  Google Scholar 

  • Chaubey A, Raina C, Parshad R, Rouf A, Gupta P, Taneja SC (2013) Bioconversion of sucralose-6-acetate to sucralose using immobilized microbial cells. J Mol Catal B Enzym 91:81–86

    Article  CAS  Google Scholar 

  • Chen R (2018) Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update. Appl Microbiol Biotechnol 102:3017–3026

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Gänzle MG (2017) Lactose and lactose-derived oligosaccharides: more than prebiotics? Int Dairy J 67:61–72

    Article  CAS  Google Scholar 

  • Chen J, Stites WE (2004) Replacement of staphylococcal nuclease hydrophobic core residues with those from thermophilic homologues indicates packing is improved in some thermostable proteins. J Mol Biol 344:271–280

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang W, Xu J, Yuan Z, Yuan T, Zhang Y, Liang C, He M, Guo Y (2017) Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase. Enzyme Microb Technol 105:18–23

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Chen J, Zhang W, Zhang T, Guang C, Um W (2018) Recent research on the physiological functions, applications, and biotechnological production of d-allose. Appl Microbiol Biotechnol 102:4269–4278

    Article  CAS  PubMed  Google Scholar 

  • Chranioti C, Chanioti S, Tzia C (2016) Comparison of spray, freeze and oven drying as a means of reducing bitter after taste of steviol glycosides (derived from Stevia rebaudian Bertoni plant)-evaluation of the final products. Food Chem 190:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5:399–412

    Article  PubMed  Google Scholar 

  • Daudé D, Remaud-Siméon M, André I (2012) Sucrose analogs: an attractive (bio)source for glycol diversification. Nat Prod Rep 29(9):945–960

    Article  CAS  PubMed  Google Scholar 

  • de Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedania SR, Patel MJ, Patel DM, Akhani RC, Patel DH (2017) Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of d-psicose 3-epimerase for rare sugar production. Enzyme Microb Technol 107:49–56

    Article  CAS  PubMed  Google Scholar 

  • Desai SS, Gachhi DB, Hungund BS (2017) Glucose isomerizing enzymes. In: Ray RC, Rosell CM (eds) Microbial enzyme technology in food applications. CRC Press, Boca Raton, pp 69–84

    Google Scholar 

  • Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC (2016) Improvement of microbial α-amylase stability: strategic approaches. Process Biochem 51:1380–1390

    Article  CAS  Google Scholar 

  • DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42(15):6437–6474

    Article  CAS  PubMed  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Du R, Song Q, Zhang Q, Zhao F, Kim RC, Zhou Z, Han Y (2018) Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol 115:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:323101

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Wang H-Y, Zhao H-Y (2017) Novel random mutagenesis method for directed evolution. Methods Mol Biol 1498:483–490

    Article  CAS  PubMed  Google Scholar 

  • Fitter J (2005) Structural and dynamical features contributing to thermostability in α-amylases. Cell Mol Life Sci 62:1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Gai Y, Chen J, Zhang S, Zhu B, Zhang D (2018) Property improvement of α-amylase from Bacillus stearothermophilus by deletion of amino acid residues arginine 179-glycine 180. Food Technol Biotechnol 56:58–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauer S, Wang Z, Otten H, Etienne M, Bjerrum MJ, Lo Leggio L, Walcarius A, Giffhorn F, Kohring GW (2014) An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of d-sorbose with enzymatic or electrochemical cofactor regeneration. Appl Microbiol Biotechnol 98:3023–3032

    Google Scholar 

  • Ghasemi A, Ghafourian S, Vafaei S, Mohebi R, Farzi M, Taherikalani M, Sadeghifard N (2015) Cloning, expression, and purification of hyperthermophile α-amylase from Pyrococcus woesei. Osong Public Heal Res Perspect 6:336–340

    Article  Google Scholar 

  • Godswill AC (2017) Sugar alcohols: chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. Int J Adv Res 3:31–66

    Google Scholar 

  • Grembecka M (2015) Sugar alcohols—their role in the modern world of sweeteners: a review. Eur Food Res Technol 241:1–14

    Article  CAS  Google Scholar 

  • Gromiha MM, Pathak MC, Saraboji K, Ortlund EA, Gaucher EA (2013) Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins Struct Funct Bioinf 81:715–721

    Article  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Kumar V, Chauhan GB (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B (2017) Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol 17:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmers F, Takors R, Thum O (2018) Robust enzyme immobilizates for industrial isomalt production. Mol Catal 445:293–298

    Article  CAS  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:921362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huwig A, Emmel S, Giffhorn F (1996) Preparation of d-sorbose from l-glucitol by bioconversion with Pseudomonas sp. Ac. Carbohydr Res 281:183–186

    Article  CAS  PubMed  Google Scholar 

  • Irwin WE, Sträter PJ (2001) Isomaltulose. In: Nabors LB (ed) Alternative sweeteners, 3rd edn. Marcel Dekker, New York, pp 413–421

    Google Scholar 

  • Itoh H, Sato T, Takeuchi T, Khan AR, Izumori K (1995) Preparation of d-sorbose from d-tagatose by immobilized d-tagatose 3-epimerase. J Ferment Bioeng 79:184–185

    Article  CAS  Google Scholar 

  • Jayamuthunagai J, Gautam P, Srisowmeya G, Chakravarthy M (2017) Biocatalytic production of d-tagatose: a potential rare sugar with versatile applications. Crit Rev Food Sci Nutr 57:3430–3437

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Lamsa M, Frandsen T, Spendler T, Harris P, Sloma A, Xu F, Nielsen JB, Cherry JR (2008) Directed evolution of a maltogenic α-amylase from Bacillus sp. TS-25. J Biotechnol 134:325–333

    Google Scholar 

  • Juge N, Svensson B, Williamson G (1998) Secretion, purification, and characterisation of barley alpha-amylase produced by heterologous gene expression in Aspergillus niger. Appl Microbiol Biotechnol 49:385–392

    Article  CAS  PubMed  Google Scholar 

  • Karam EA, Abdel Wahab WA, Saleh SAA, Hassan ME, Kansoh AL, Esawy MA (2017) Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol 102:694–703

    Google Scholar 

  • Kelly RM, Dijkhuizen L, Leemhuis H (2009) Starch and α-glucan acting enzymes, modulating their properties by directed evolution. J Biotechnol 140:184–193

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Takahata S, Okaya H, Tsumura T, Izumori K (1992) “d-sorbose fermentation” from galactitol by Pseudomonas sp. ST 24. J Ferment Bioeng 74:149–152

    Google Scholar 

  • Kim HJ, Ryu SA, Kim P, Oh DK (2003) A feasible enzymatic process for d-tagatose production by an immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnol Prog 19:400–404

    Article  CAS  PubMed  Google Scholar 

  • Ko JA, Nam SH, Park JY, Wee Y, Kim D, Lee WS, Ryu YB, Kim YM (2016) Synthesis and characterization of glucosyl stevioside using Leuconostoc dextransucrase. Food Chem 211:577–582

    Article  CAS  PubMed  Google Scholar 

  • Kochikyan VT, Markosyan AA, Abelyan LA, Balayan AM, Abelyan VA (2006) Combined enzymatic modification of stevioside and rebaudioside A. Appl Biochem Microbiol 42:31–37

    Article  CAS  Google Scholar 

  • Kotwal SM, Shankar V (2009) Immobilized invertase. Biotechnol Adv 27:311–322

    Article  CAS  PubMed  Google Scholar 

  • Landry TD, Chew L, Davis JW, Frawley N, Foley HH, Stelman SJ, Thomas J, Wolt J, Hanselman DS (2003) Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regul Toxicol Pharmacol 37:149–168

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Hong SH, Kim KR, Oh DK (2017) High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnol Lett 39:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Lee TE, Shin KC, Oh DK (2018) Biotransformation of fructose to allose by a one-pot reaction using Flavonifractor plautii d-allulose 3-epimerase and Clostridium thermocellum ribose 5-phosphate isomerase. J Microbiol Biotechnol 28:418–424

    Article  PubMed  Google Scholar 

  • Li Z, Gao Y, Nakanishi H, Gao X, Cai L (2013) Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein J Org Chem 9:2434–2445

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Lin LM, Sui F, Wang ZM, Huo HR, Dai L, Jiang TL (2014) Chemistry and pharmacology of Siraitia grosvenorii: a review. Chin J Nat Med 12(2):89–102

    CAS  PubMed  Google Scholar 

  • Li Z, Li Y, Duan S, Liu J, Yuan P, Nakanishi H, Gao XD (2015) Bioconversion of d-glucose to d-psicose with immobilized d-xylose isomerase and d-psicose 3-epimerase on Saccharomyces cerevisiae spores. J Ind Microbiol Biotechnol 42:1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li Y, Wang Y, Chen L, Yan M, Chen K, Xu L, Ouyang P (2016) Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 178:1586–1598

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang H, Cheng H, Deng Z (2017) Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. J Funct Foods 32:208–217

    Article  CAS  Google Scholar 

  • Li X, Wang Y, Park J-T, Gu L, Li D (2018) An extremely thermostable maltogenic amylase from Staphylothermus marinus: Bacillus expression of the gene and its application in genistin glycosylation. Int J Biol Macromol 107:413–417

    Article  CAS  PubMed  Google Scholar 

  • Liese A, Seelbach K, Buchholz A, Haberland J (2006) Processes. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations, 2nd edn. Wiley-VCH, Weinheim, pp 147–513

    Chapter  Google Scholar 

  • Lim BC, Kim HJ, Oh DK (2007) High production of d-tagatose by the addition of boric acid. Biotechnol Prog 23:824–828

    Article  CAS  PubMed  Google Scholar 

  • Lim BC, Kim HJ, Oh DK (2009) A stable immobilized d-psicose 3-epimerase for the production of d-psicose in the presence of borate. Process Biochem 44:822–828

    Article  CAS  Google Scholar 

  • Liu Y, Lu F, Li Y, Yin XB, Wang Y, Gao C (2008) Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 78:85–94

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Zhu F, Zhu L, Chen G, He B (2015) Highly efficient enzymatic synthesis of Z-aspartame in aqueous medium via in situ product removal. Biochem Eng J 98:63–67

    Article  CAS  Google Scholar 

  • Lloyd NE, Nelson WJ (1984) Glucose- and fructose-containing sweeteners from starch. In: Whistler RL, BeMiller JN, Paschall EF (eds) Starch: chemistry and technology, 2nd edn. Academic Press, Orlando, Florida, pp 611–660

    Google Scholar 

  • Manthey FA, Xu Y (2010) Glycobiology of foods: food carbohydrates—occurrence, production, food uses, and healthful properties. In: Yildiz F (ed) Advances in food biochemistry. CRC Press Taylor & Francis Group, Boca Raton, pp 25–49

    Google Scholar 

  • Martins PLG, Braga AR, de Rosso VV (2017) Can ionic liquid solvents be applied in the food industry? Trends Food Sci Technol 66:117–124

    Article  CAS  Google Scholar 

  • Mathur S, Bulchandani N, Parihar S, Shekhawat GS (2017) Critical review on steviol glycosides: pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int J Pharmacol 13:916–928

    Article  Google Scholar 

  • Mei W, Wang L, Zang Y, Zheng Z, Ouyang J (2016) Characterization of an l-arabinose isomerase from Bacillus coagulans NL01 and its application for d-tagatose production. BMC Biotechnol 16:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Men Y, Zhu Y, Zeng Y, Izumori K, Sun Y, Ma Y (2014) Co-expression of d-glucose isomerase and d-psicose 3-epimerase: development of an efficient one-step production of d-psicose. Enzyme Microb Technol 64–65:1–5

    Article  CAS  PubMed  Google Scholar 

  • Menavuvu BT, Poonperm W, Leang K, Noguchi N, Okada H, Morimoto K, Granstrom TB, Takada G, Izumori K (2006) Efficient biosynthesis of d-allose from d-psicose by cross linked recombinant L-rhamnose Isomerase: separation of product by ethanol crystallization. J Biosci Bioeng 101:340–345

    Article  CAS  PubMed  Google Scholar 

  • Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149

    Article  CAS  PubMed  Google Scholar 

  • Mooradian AD, Smith M, Tokuda M (2017) The role of artificial and natural sweeteners in reducing the consumption of table sugar: a narrative review. Clin Nutr ESPEN 18:1–8

    Article  PubMed  Google Scholar 

  • Moorthy BS, Iyer LK, Topp EM (2015) Characterizing protein structure, dynamics and conformation in lyophilized solids. Curr Pharm Des 21:5845–5853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto K, Park CS, Ozaki M, Takeshita K, Shimonishi T, Granström TB, Takata G, Tokuda M, Izumori K (2006) Large scale production of d-allose from d-psicose using continuous bioreactor and separation system. Enzyme Microb Technol 38:855–859

    Article  CAS  Google Scholar 

  • Mu W, Zhang W, Feng Y, Jiang B, Zhou L (2012) Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol 94:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Mu W, Yu L, Zhang W, Zhang T, Jiang B (2015) Isomerases for biotransformation of d-hexoses. Appl Microbiol Biotechnol 99(16):6571–6584

    Article  CAS  PubMed  Google Scholar 

  • Mu W, Li W, Wang X, Zhang T, Jiang B (2017) Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Food Chem 229:761–768

    Article  CAS  Google Scholar 

  • Musa A, Miao M, Zhang T, Jiang B (2014) Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction. Food Chem 146:23–29

    Google Scholar 

  • Nagai Y, Sugitani T, Tsuyuki K (1994) Characterization of alpha glucosyltransferase from Pseudomonas mesoacidophila MX-45. Biosci Biotechnol Biochem 58:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Nair HP, Vincent H, Puthusseri RM, Bhat SG (2017) Molecular cloning and characterization of a halotolerant α-amylase from marine metagenomic library derived from Arabian Sea sediments. 3 Biotech 7:65

    Google Scholar 

  • Nguyen TK, Hong MG, Chang PS, Lee BH, Yoo SH (2018) Biochemical properties of l-arabinose isomerase from Clostridium hylemonae to produce d-tagatose as a functional sweetener. PLoS ONE 13(4):e0196099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nithya K, Muthukumar C, Kadaikunnan S, Alharbi NS, Khaled JM, Dhanasekaran D (2017) Purification, characterization, and statistical optimization of a thermostable α-amylase from desert actinobacterium Streptomyces fragilis DA7-7. 3 Biotech 7:350

    Google Scholar 

  • Niu D, Zuo Z, Shi G-Y, Wang Z-X (2009) High yield recombinant thermostable α-amylase production using an improved Bacillus licheniformis system. Microb Cell Fact 8:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms—a review. Regul Toxicol Pharmacol 45:144–158

    Article  CAS  PubMed  Google Scholar 

  • Orsi DC, Sato HH (2016) Isomaltulose production using free and immobilized Serratia plymuthica cells. African J Biotechnol 15(20):835–842

    Article  CAS  Google Scholar 

  • Park YC, Oh EJ, Jo JH, Jin YS, Seo JH (2016a) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Kim T, Hong SH, Shin KC, Kim KR, Oh DK (2016b) d-allulose production from d-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing d-allulose 3-epimerase Flavonifractor plautii. PLoS One 11(7):e0160044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CS, Park CS, Shin KC, Oh DK (2016c) Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. J Biosci Bioeng 121:186–190

    Article  CAS  PubMed  Google Scholar 

  • Parker K, Salas M, Nwosu VC (2010) High fructose corn syrup: production, uses and public health concerns. Biotechnol Mol Biol Rev 5(5):71–78

    CAS  Google Scholar 

  • Pervez S, Aman A, Iqbal S, Siddiqui NN, Ul Qader SA (2014) Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnol 14:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzer J, Steiner K (2016) Amides in nature and biocatalysis. J Biotechnol 10(235):32–46

    Article  CAS  Google Scholar 

  • Pooja S, Pushpanathan M, Jayashree S, Gunasekaran P, Rajendhran J (2015) Identification of periplasmic α-amlyase from cow dung metagenome by product induced gene expression profiling (Pigex). Indian J Microbiol 55:57–65

    Article  CAS  Google Scholar 

  • Porfirif MC, Milatich EJ, Farruggia BM, Romanini D (2016) Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step. J Chromatogr B 1022:87–92

    Article  CAS  Google Scholar 

  • Ranjani V, Janeček Š, Chai KP, Shahir S, Abdul Rahman RN, Chan KG, Goh KM (2015) Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Sci Rep 4:5850

    Google Scholar 

  • Ravaud S, Robert X, Watzlawick H, Haser R, Mattes R, Aghajari N (2009) Structural determinants of product specificity of sucrose isomerases. FEBS Lett 583:1964–1968

    Article  CAS  PubMed  Google Scholar 

  • Rhimi M, Aghajari N, Juy M, Chouayekh H, Maguin E, Haser R, Bejar S (2009) Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for d-tagatose production. Biochimie 91:650–653

    Article  CAS  PubMed  Google Scholar 

  • Sawale PD, Shendurse AM, Mohan MS, Patil GR (2017) Isomaltulose (Palatinose)—an emerging carbohydrate. Food Biosci 18:46–52

    Article  CAS  Google Scholar 

  • Sethi BK, Jana A, Nanda PK, DasMohapatra PK, Sahoo SL, Patra JK (2016) Production of α-amylase by Aspergillus terreus NCFT 4269.10 using pearl millet and its structural characterization. Front Plant Sci 7:639

    Google Scholar 

  • Sharma A, Satyanarayana T (2013) Microbial acid-stable α-amylases: characteristics, genetic, engineering and applications. Process Biochem 48:201–211

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Madhavan A, Beevi US, Mathew AK, Abraham A, Pandey A, Kumar V (2017) Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour Technol 245:1740–1748

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Singh RP, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 85:565–572

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Chauhan K, Singh RP (2017) Enzymatic approaches for the synthesis of high-fructose syrup. In: Gahlawat SK, Salar RK, Siwach P, Duhan JS, Kumar S, Kaur P (eds) Plant biotechnology: recent advancements and developments. Springer, Singapore, pp 189–211

    Chapter  Google Scholar 

  • Singh RS, Chauhan K, Pandey A, Larroche C (2018) Biocatalytic strategies for the production of high fructose syrup from inulin. Bioresour Technol 260:395–403

    Article  CAS  PubMed  Google Scholar 

  • Singla R, Jaitak V (2016) Synthesis of rebaudioside A from stevioside and their interaction model with hTAS2R4 bitter taste receptor. Phytochemistry 125:106–111

    Article  CAS  PubMed  Google Scholar 

  • Steele HL, Jaeger K-E, Daniel R, Streit WR (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16:25–37

    Article  CAS  PubMed  Google Scholar 

  • Sudan SK, Kumar N, Kaur I, Sahni G (2018) Production, purification and characterization of raw starch hydrolyzing thermostable acidic α-amylase from hot springs. India Int J Biol Macromol 117:831–839

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Chen L, Lou B, Bai Y, Yu X, Zhao M, Wang Z (2017) Acetylation and deacetylation for sucralose preparation by a newly isolated Bacillus amyloliquefaciens WZS01. J Biosci Bioeng 123:576–580

    Article  CAS  PubMed  Google Scholar 

  • Tringe SG (2005) Comparative metagenomics of microbial communities. Science (80-) 308:554–557

    Google Scholar 

  • Tufvesson P, Lima-Ramos J, Al Haque N, Gernaey KV, Woodley JM (2013) Advances in the process development of biocatalytic processes. Org Process Res Dev 17:1233–1238

    Article  CAS  Google Scholar 

  • Varzakas T, Labropoulos A (2012) Other sweeteners. In: Varzakas T, Labropoulos A, Anestis S (eds) Sweeteners: nutritional aspects, applications and production technology. CRC Press, Taylor and Francis Group, Boca Raton, USA, pp 175–208

    Chapter  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 99:717–727

    Article  CAS  PubMed  Google Scholar 

  • Vihinen M, Mäntsälä P (1990) Characterization of a thermostable Bacillus stearothermophilus alpha-amylase. Biotechnol Appl Biochem 12:427–435

    Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  CAS  PubMed  Google Scholar 

  • Wach W, Rose T, Klingeberg M, Peters S, Dörr T, Theis S, Kowalczyk J, Hausmann S (2017) Trehalulose-containing composition, its preparation and use. Patent US9744184

    Google Scholar 

  • Wang T-H (2015) Synthesis of neofructooligosaccharides. Org Chem Insights 5:1–6

    Article  Google Scholar 

  • Wang S, Lin C, Liu Y, Shen Z, Jeyaseelan J, Qin W (2016a) Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment. Int J Biochem Mol Biol 7:1–10

    PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang P, Tian J et al (2016b) A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 6:22229

    Google Scholar 

  • Wang Y, Chen L, Li Y, Li Y, Yan M, Chen K, Hao N, Xu L (2016c) Efficient enzymatic production of rebaudioside A from stevioside. Biosci Biotechnol Biochem 80(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Jia W, Yu X, Mao D (2016) Enzymatic synthesis of sucrose-6-acetate by a novel immobilized fructosyltransferase from Aspergillus sp. GX-001. J Mol Catal B: Enzym 123:100–106

    Google Scholar 

  • Wind RD, Buitelaar RM, Eggink G, Huizing HJ, Dijkhuizen L (1994) Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable α-amylase-producing strain. Appl Microbiol Biotechnol 41:155–162

    Article  CAS  Google Scholar 

  • Windish WW, Mhatre NS (1965) Microbial amylases. Adv Appl Microbiol 7:273–304

    Article  CAS  PubMed  Google Scholar 

  • Wintrode PL, Arnold FH (2000) Temperature adaptation of enzymes: lessons from laboratory evolution. Adv Protein Chem 55:161–225

    Article  CAS  PubMed  Google Scholar 

  • Wintrode PL, Miyazaki K, Arnold FH (2000) Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J Biol Chem 275:31635–31640

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Birch RG (2005) Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene. Appl Environ Microbiol 71:1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Wu S, Qiu J, Xu C, Li S, Xu H (2017) Green synthesis of isomaltulose from cane molasses by Bacillus subtilis WB800-pHA01-palI in a biologic membrane reactor. Food Chem 229:761–768

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang Y, Tong B, Zhao F, Kim RC, Zhou Z, Han Y (2018) Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol 109:329–337

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Li S, Li J, Li Y, Feng X, Wang R, Xu H, Zhou J (2013) The structural basis of Erwinia rhapontici isomaltulose synthase. PLoS ONE 8(9):e74788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Yang F, Xiong C, Li J, Tang X, Zhou J, Xie Z, Ding J, Yang Y, Huang Z (2014) Cloning and characterization of a novel α-amylase from a fecal microbial metagenome. J Microbiol Biotechnol 24:447–452

    Article  CAS  PubMed  Google Scholar 

  • Yagasaki M, Hashimoto S-i (2008) Synthesis and application of dipeptides; current status and perspectives. Appl Microbiol Biotechnol 81:13–22

    Google Scholar 

  • Yan S, Wu G (2017) Bottleneck in secretion of α-amylase in Bacillus subtilis. Microb Cell Fact 16:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zheng P, Ni Y, Sun Z (2012) Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. J Biotechnol 161:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Yang R, Hua X, Shen Q, Zhao W, Zhang W (2013) Modification of stevioside using transglucosylation activity of Bacillus amyloliquefaciens α-amylase to reduce its bitter aftertaste. LWT–Food Sci Technol 51:524–530

    Google Scholar 

  • Yin H, Yang Z, Nie X, Li S, Sun X, Gao C, Wang Z, Zhou G, Xu P, Yang C (2017) Functional and cooperative stabilization of a two-metal (Ca, Zn) center in α-amylase derived from Flavobact eriaceae species. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Yuan L, Kurek I, English J, Keenan R (2005) Laboratory-directed protein evolution. Microbiol Mol Biol Rev 69:373–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar A, Aftab MN, ud Din Z, Aftab S, Iqbal I, ul Haq I (2016) Cloning, purification and characterization of a highly thermostable amylase gene of Thermotoga petrophila into Escherichia coli. Appl Biochem Biotechnol 178:831–848

    Google Scholar 

  • Zhang W, Zhang T, Jiang B, Um W (2017) Enzymatic approaches to rare sugar production. Biotechnol Adv 35:267–274

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Reynolds LB, Menassa R (2017) A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates. BMC Biotechnol 17:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carvalho, F., Fernandes, P. (2019). Enzymes in Sweeteners Production. In: Parameswaran, B., Varjani, S., Raveendran, S. (eds) Green Bio-processes. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_9

Download citation

Publish with us

Policies and ethics