Skip to main content

Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of Polymer-Carbon Composites

  • Chapter
  • First Online:
Carbon-Containing Polymer Composites

Abstract

In this chapter, the electromagnetic interference shielding effectiveness (EMISE) of carbon based polymer composites is discussed in details. The basic principle of EMI, EMI shielding, and its theory are mentioned herein. The basic requirement of EMI SE of a material is its electrical conductivity. It has been mentioned that electrical conductivity of 0.5 S/cm is required to produce at least 30 dB attenuation. As non-conducting materials exhibit negligible EMI SE, hence EMI SE of polymer-carbon composites based on only conducting carbons like carbon black, carbon fiber, carbon nanotubes, and graphene are reported within this chapter. EMI SE depends on many factors like nature of filler, filler concentration, nature of polymer, filler geometry, polymer blending, sample thickness, frequency of radiation, etc. These governing factors of EMI SE are discussed is details at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134

    Article  CAS  PubMed  Google Scholar 

  2. Geetha S, Satheesh KKK, Rao CR, Vijayan M, Trivedi DC (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112(4):2073–2086

    Article  CAS  Google Scholar 

  3. Mottahed BD, Manoochehri S (1995) A review of research in materials, modeling and simulation, design factors, testing, and measurements related to electromagnetic interference shielding. Polym Plast Technol Eng 34(2):271–346

    Article  CAS  Google Scholar 

  4. Maiti S, Shrivastava NK, Suin S, Khatua B (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl Mater Inter 5(11):4712–4724

    Article  CAS  Google Scholar 

  5. Mazurkiewicz PH, Hewlett-Packard Development Company LP (2005) Board-level conformal EMI shield having an electrically-conductive polymer coating over a thermally-conductive dielectric coating. US Patent 6,849,800

    Google Scholar 

  6. Chung D (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285

    Article  CAS  Google Scholar 

  7. Huang JC (1995) EMI shielding plastics: a review. Adv Polym Technol 14(2):137–150

    Article  CAS  Google Scholar 

  8. Gamble J, Yats LD (1995) The Dow Chemical Company. EMI shielding composites. US Patent 5,399,295

    Google Scholar 

  9. Luch D (2004) Electromagnetic interference shields and methods of manufacture. US Patent 6,697,248

    Google Scholar 

  10. Bigg D (1984) The effect of compounding on the conductive properties of EMI shielding compounds. Adv Polym Tech 4(3–4):255–256

    Article  CAS  Google Scholar 

  11. Pukánszk B, Maurer FH (1995) Composition dependence of the fracture toughness of heterogeneous polymer systems. Polymer 36(8):1617–1625

    Article  Google Scholar 

  12. Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng, R 74(7):211–232

    Article  Google Scholar 

  13. Prasad V (2012) Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films. Mater Res Bull 47(6):1529–1532

    Article  CAS  Google Scholar 

  14. Chen SC, Chien RD, Lee PH, Huang JS (2005) Effects of molding conditions on the electromagnetic interference performance of conductive ABS parts. J Appl Polym Sci 98(3):1072–1080

    Article  CAS  Google Scholar 

  15. Huynen I, Quiévy N, Bailly C, Bollen P, Detrembleur C, Eggermont S, Molenberg I, Thomassin JM, Urbanczyk L, Pardoen T (2011) Multifunctional hybrids for electromagnetic absorption. Acta Mater 59(8):3255–3266

    Article  CAS  Google Scholar 

  16. Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161(15):1522–1526

    Article  CAS  Google Scholar 

  17. Saini P, Choudhary V (2013) Structural details, electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J Mater Sci 48(2):797–804

    Article  CAS  Google Scholar 

  18. Markham D (1999) Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Mater Des 21(1):45–50

    Article  Google Scholar 

  19. Bagwell RM, McManaman JM, Wetherhold RC (2006) Short shaped copper fibers in an epoxy matrix: their role in a multifunctional composite. Compos Sci Technol 66(3):522–530

    Article  CAS  Google Scholar 

  20. Biswas KK, Somiya S (2001) Effect of isothermal physical aging on creep behavior of stainless-fiber/PPE composites. J Phys Soc Jpn 50(9Appendix):172–177

    Google Scholar 

  21. Chen JH, Hsu KC, Hsieh MY (2016) Effects of preparation parameters of a one-pot approach on the conductivity, structure, and chemical composition of silver/reduced-graphene oxide composite. Ind Eng Chem Res 55(16):4390–4402

    Article  CAS  Google Scholar 

  22. Huang CJ, Chang TC (2004) Studies on the electromagnetic interference shielding effectiveness of metallized PVAc-AgNO3/PET conductive films. J Appl Polym Sci 91(1):270–273

    Article  CAS  Google Scholar 

  23. Yang Y, Gupta M, Dudley K (2007) Studies on electromagnetic interference shielding characteristics of metal nanoparticle-and carbon nanostructure-filled polymer composites in the Ku-band frequency. Micro Nano Lett 2(4):85–89

    Article  CAS  Google Scholar 

  24. Kim M, Kim H, Byun S, Jeong S, Hong Y, Joo J, Song KT, Kim JK, Lee CJ, Lee JY (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126(2):233–239

    Article  CAS  Google Scholar 

  25. Bhadra S, Singha NK, Khastgir D (2008) Semiconductive composites from ethylene 1-octene copolymer and polyaniline coated nylon 6: studies on mechanical, thermal, processability, electrical, and EMI shielding properties. Polym Eng Sci 48(5):995–1006

    Article  CAS  Google Scholar 

  26. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym Adv Technol 20(6):550–557

    Article  CAS  Google Scholar 

  27. Geetha S, Kumar KKS, Trivedi DC (2005) Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations. J Compos Mater 39(7):647–658

    Article  CAS  Google Scholar 

  28. Lakshmi K, John H, Mathew K, Joseph R, George K (2009) Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater 57(2):371–375

    Article  CAS  Google Scholar 

  29. Niu Y (2006) Preparation of polyaniline/polyacrylate composites and their application for electromagnetic interference shielding. Polym Compos 27(6):627–632

    Article  CAS  Google Scholar 

  30. Vulpe S, Nastase F, Nastase C, Stamatin I (2006) PAN–PAni nanocomposites obtained in thermocentrifugal fields. Thin Solid Films 495(1):113–117

    Article  CAS  Google Scholar 

  31. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41(10):1345–1367

    Article  CAS  Google Scholar 

  32. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  33. Lau AKT, Hui D (2002) The revolutionary creation of new advanced materials-carbon nanotube composites. Compos B 33(4):263–277

    Article  Google Scholar 

  34. Chou TW, Gao L, Thostenson ET, Zhang Z, Byun JH (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70(1):1–19

    Article  CAS  Google Scholar 

  35. Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    Article  CAS  Google Scholar 

  36. Lorenz CD, Ziff RM (2001) Precise determination of the critical percolation threshold for the three-dimensional “Swiss cheese” model using a growth algorithm. J Chem Phys 114(8):3659–3661

    Article  CAS  Google Scholar 

  37. Stanley HE (1977) Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents. J Phys A: Math Gen 10(11):L211

    Article  CAS  Google Scholar 

  38. Duan Y, Liu S, Guan H (2006) Investigation of electromagnetic characteristics of polyaniline composite. J Compos Mater 40(12):1093–1104

    Article  CAS  Google Scholar 

  39. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145

    Article  CAS  PubMed  Google Scholar 

  40. Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113(2):919–926

    Article  CAS  Google Scholar 

  41. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5(6):927–931

    Article  CAS  PubMed  Google Scholar 

  42. Colaneri NF, Schacklette L (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41(2):291–297

    Article  Google Scholar 

  43. Lee C, Song H, Jang K, Oh E, Epstein A, Joo J (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102(1):1346–1349

    Article  CAS  Google Scholar 

  44. Kim B, Lee H, Park S, Kim H (2011) Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 519(11):3492–3496

    Article  CAS  Google Scholar 

  45. Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5(31):24342–24351

    Article  CAS  Google Scholar 

  46. Cao M-S, Wang X-X, Cao W-Q, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3(26):6589–6599

    Article  CAS  Google Scholar 

  47. Singh AP, Garg P, Alam F, Singh K, Mathur R, Tandon RP, Chandra A, Dhawan SK (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50(10):3868–3875

    Article  CAS  Google Scholar 

  48. Du L, Du Y, Li Y, Wang J, Wang C, Wang X, Xu P, Han X (2010) Surfactant-Assisted Solvothermal Synthesis of Ba (CoTi) x Fe12–2xO19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. J Phys Chem C 114(46):19600–19606

    Article  CAS  Google Scholar 

  49. Naito Y, Suetake K (1971) Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Techn 19(1):65–72

    Article  Google Scholar 

  50. Wu F, Xu Z, Wang Y, Wang M (2014) Electromagnetic interference shielding properties of solid-state polymerization conducting polymer. RSC Adv 4(73):38797–38803

    Article  CAS  Google Scholar 

  51. Mottahed BD (2000) Enhanced shielding effectiveness of polymer matrix composite enclosures utilizing constraint-based optimization. Polym Eng Sci 40(1):61–69

    Article  CAS  Google Scholar 

  52. Nam I, Lee H, Jang J (2011) Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Compos A 42(9):1110–1118

    Article  CAS  Google Scholar 

  53. Bahadorzadeh M, Lotfi-Neyestanak AA (2012) A novel and efficient technique for improving shielding effectiveness of a rectangular enclosure using optimized aperture load. Elektronika ir Elektrotechnika 18(10):89–92

    Article  Google Scholar 

  54. Luo X, Chung D (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos B 30(3):227–231

    Article  Google Scholar 

  55. Li M, Drewniak JL, Radu S, Nuebel J, Hubing TH, DuBroff RE, Doren TPV (2001) An EMI estimate for shielding-enclosure evaluation. IEEE Trans Electromagn Compat 43(3):295–304

    Article  Google Scholar 

  56. Bigg D (1987) The effect of chemical exposure on the EMI shielding of conductive plastics. Polym Compos 8(1):1–7

    Article  CAS  Google Scholar 

  57. Gerteisen S, Nangrani K (1988) Plastics that shield against EMI/RFI. Society of Plastic Engineers, Inc., Chicago Section Electric and Electronics Division, Rosemont IL

    Google Scholar 

  58. Kim H, Kim K, Lee C, Joo J, Cho S, Yoon HS, Pejaković DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84(4):589–591

    Article  CAS  Google Scholar 

  59. Joo J, Lee C (2000) High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J Appl Phys 88(1):513–518

    Article  CAS  Google Scholar 

  60. Lee C, Lee D, Jeong C, Hong Y, Shim J, Joo J, Kim MS, Lee JY, Jeong SH, Byun SW, Zang DS, Yang HG (2002) Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polym Adv Technol 13(8):577–583

    Article  CAS  Google Scholar 

  61. Sankaran S, Dasgupta S, Sekhar KR, Kumar MJ (2006) Thermosetting polymer composites for EMI shielding applications. In: Proceedings of the 9th international conference on electromagnetic interference and compatibility (INCEMIC), IEEE, pp 1–6

    Google Scholar 

  62. Dixon D, Masi J (1989) Development of a composite material with long-term EMI shielding properties. SAMPE J 25:31–37

    CAS  Google Scholar 

  63. Bai J, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34(8):689–694

    Article  CAS  Google Scholar 

  64. Tsotra P, Friedrich K (2003) Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites. Compos A 34(1):75–82

    Article  Google Scholar 

  65. Olivero DA, Radford DW (1997) Integrating EMI shielding into composite structure. SAMPE J 33(1):51–57

    CAS  Google Scholar 

  66. Sarto MS, Michele S, Leerkamp P, Thuis H (2001) An innovative shielding concept for EMI reduction. IEEE EMC Soc Newsl Summer 22–28

    Google Scholar 

  67. Guire T, Varadan VV, Varadan V (1990) Influence of chirality on the reflection of EM waves by planar dielectric slabs. IEEE Trans Electromagn Compat 32(4):300–303

    Article  Google Scholar 

  68. Bigg DM (1979) Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Polym Eng Sci 19(16):1188–1192

    Article  CAS  Google Scholar 

  69. Foy JV, Lindt JT (1987) Electrical properties of exfoliated-graphite filled polyester based composites. Polym Compos 8(6):419–426

    Article  CAS  Google Scholar 

  70. Chiou J-M, Zheng Q, Chung D (1989) Electromagnetic interference shielding by carbon fibre reinforced cement. Composites 20(4):379–381

    Article  CAS  Google Scholar 

  71. Jana P, Mallick A, De S (1991) Electromagnetic interference shielding by carbon fibre-filled polychloroprene rubber composites. Composites 22(6):451–455

    Article  CAS  Google Scholar 

  72. Ahmad M, Abdelazeez M, Zihlif A (1989) Microwave properties of the talc filled polypropylene. J Mater Sci 24(5):1795–1800

    Article  CAS  Google Scholar 

  73. Awan FG, Sheikh NM, Qureshi SA Ali A (2008) A generic model for the classification of radiation emission data in electromagnetic compatibility measurement. In: Radio and wireless symposium, IEEE pp 315–318

    Google Scholar 

  74. Arai K, Xu G, Sugimoto O (1989) Micro-gap discharge waveshapes and radiated electromagnetic waves in atmospheric air and sulphur hexafluoride gas. Electrical Engineering in Japan 109(4):7–16

    Article  Google Scholar 

  75. Jana PB, Chaudhuri S, Pal A, De S (1992) Electrical conductivity of short carbon fiber-reinforced polychloroprene rubber and mechanism of conduction. Polym Engin Sci 32(6):448–456

    Article  CAS  Google Scholar 

  76. Běhal M, Ducháček V (1988) Thermovulcanization of polychloroprene rubber and its blends with poly (vinyl chloride). J Appl Polym Sci 35(2):507–515

    Article  Google Scholar 

  77. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718

    Article  CAS  Google Scholar 

  78. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22

    Article  CAS  Google Scholar 

  79. Wang L-L, Tay B-K, See K-Y, Sun Z, Tan L-K, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8):1905–1910

    Article  CAS  Google Scholar 

  80. Al-Saleh MH, Sundararaj U (2010) Processing-microstructure-property relationship in conductive polymer nanocomposites. Polymer 51(12):2740–2747

    Article  CAS  Google Scholar 

  81. Al-Saleh MH, Sundararaj U (2011) Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions. Polym Adv Technol 22(2):246–253

    Article  CAS  Google Scholar 

  82. Lee BO, Woo WJ, Kim MS (2001) EMI shielding effectiveness of carbon nanofiber filled poly (vinyl alcohol) coating materials. Macromol Mater Eng 286(2):114–118

    Article  CAS  Google Scholar 

  83. Lee B, Woo W, Park H, Hahm H, Wu J, Kim M (2002) Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF. J Mater Sci 37(9):1839–1843

    Article  CAS  Google Scholar 

  84. Wu J, Chung D (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40(3):445–447

    Article  CAS  Google Scholar 

  85. Zou T, Zhao N, Shi C, Li J (2011) Microwave absorbing properties of activated carbon fibre polymer composites. Bull Mater Sci 34(1):75–79

    Article  CAS  Google Scholar 

  86. Rahaman M, Chaki TK, Khastgir D (2011) High-performance EMI shielding materials based on short carbon fiber-filled ethylene vinyl acetate copolymer, acrylonitrile-butadiene copolymer, and their blends. Polym Compos 32(11):1790–1805

    Article  CAS  Google Scholar 

  87. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Cat B: Environ 88(1):1–24

    CAS  Google Scholar 

  88. Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F (2009) Decomposition of hydrocarbons to hydrogen and carbon. Appl Cat A: Gen 359(1):1–24

    Article  CAS  Google Scholar 

  89. Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21(4):299–313

    Article  CAS  Google Scholar 

  90. Sánchez-González J, Macías-García A, Alexandre-Franco M, Gómez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43(4):741–747

    Article  CAS  Google Scholar 

  91. Sahoo BP, Naskar K, Tripathy DK (2012) Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci 47(5):2421–2433

    Article  CAS  Google Scholar 

  92. Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur Polym J 36(5):1043–1054

    Article  CAS  Google Scholar 

  93. Mohanraj G, Chaki T, Chakraborty A, Khastgir D (2006) AC impedance analysis and EMI shielding effectiveness of conductive SBR composites. Polym Eng Sci 46(10):1342–1349

    Article  CAS  Google Scholar 

  94. Madani M (2010) Conducting carbon black filled NR/IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J Polym Res 17(1):53

    Article  CAS  Google Scholar 

  95. Ling Q, Sun J, Zhao Q, Zhou Q (2011) Effects of carbon black content on microwave absorbing and mechanical properties of linear low density polyethylene/ethylene-octene copolymer/calcium carbonate composites. Polym-Plast Technol Eng 50(1):89–94

    Article  CAS  Google Scholar 

  96. Oh J-H, Oh K-S, Kim C-G, Hong C-S (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos B 35(1):49–56

    Article  CAS  Google Scholar 

  97. Al-Saleh MH, Sundararaj U (2008) Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol Mater Eng 293(7):621–630

    Article  CAS  Google Scholar 

  98. Ma CCM, Huang YL, Kuan HC, Chiu YS (2005) Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites. J Polym Sci, Part B: Polym Phys 43(4):345–358

    Article  CAS  Google Scholar 

  99. Heremans J, Beetz C Jr (1985) Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B 32(4):1981

    Article  CAS  Google Scholar 

  100. Heremans J (1985) Electrical conductivity of vapor-grown carbon fibers. Carbon 23(4):431–436

    Article  CAS  Google Scholar 

  101. Endo M, Kim Y, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39(9):1287–1297

    Article  CAS  Google Scholar 

  102. Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083

    Article  CAS  Google Scholar 

  103. Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85(25):5384

    Article  CAS  PubMed  Google Scholar 

  104. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A Mater Sci Process 72(5):573–580

    Article  CAS  Google Scholar 

  105. Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75(8):1086–1088

    Article  CAS  Google Scholar 

  106. Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574

    Article  CAS  Google Scholar 

  107. Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng, B 132(1):85–89

    Article  CAS  Google Scholar 

  108. Arjmand M, Mahmoodi M, Gelves GA, Park S, Sundararaj U (2011) Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 49(11):3430–3440

    Article  CAS  Google Scholar 

  109. Thomassin J-M, Lou X, Pagnoulle C, Saib A, Bednarz L, Huynen I, Jérôme R, Detrembleur C (2007) Multiwalled carbon nanotube/poly (ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111(30):11186–11192

    Article  CAS  Google Scholar 

  110. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71(13):1563–1568

    Article  CAS  Google Scholar 

  111. Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, Minus ML (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Mater 6(6):2543–2577

    Article  CAS  Google Scholar 

  112. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV (2004) Electric field effect in atomically thin carbon films. Firsov, Science (Washington, DC, U. S.) 306:666–669

    Google Scholar 

  113. Moon JS, Gaskill DK (2011) Graphene: its fundamentals to future applications. IEEE Trans Microwave Theory Tech 59:2702–2708

    Article  CAS  Google Scholar 

  114. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    Article  CAS  Google Scholar 

  115. Bhattacharya P, Das CK, Kalra SS (2012) Graphene and MWCNT: potential candidate for microwave absorbing materials. J Mater Sci Res 1:126–132

    CAS  Google Scholar 

  116. Fang M, Tang Z, Lu H, Nutt SJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. Mater Chem 22:109–114

    Article  CAS  Google Scholar 

  117. Basavaraja C, Kim WJ, Kim YD, Huh DS (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65:3120–3123

    Article  CAS  Google Scholar 

  118. Chen YJ, Nguyen DD, Li YA, Yip MC, Hsu WK, Tai NH (2011) Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites. Diamond Relat Mater 20:1183–1187

    Article  CAS  Google Scholar 

  119. Yu H, Wang T, Wen B, Lu M, Xu Z, Zhu C, Chen Y, Xue X, Sun C, Cao MJ (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Mater Chem 22:21679–21685

    Article  CAS  Google Scholar 

  120. Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484

    Article  CAS  PubMed  Google Scholar 

  121. Cao WQ, Wang XX, Yuan J, Wang WZ, Cao MS (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3:10017

    Article  CAS  Google Scholar 

  122. He JZ, Wang XX, Zhang YL, Cao MS (2016) Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J Mater Chem C 4:7130

    Article  CAS  Google Scholar 

  123. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480

    Article  CAS  PubMed  Google Scholar 

  124. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) High Nanofiller-Content Nanoocomposites via Vacuum-Assisted Self-Assembly. Adv Funct Mater 20:3322–3329

    Article  CAS  Google Scholar 

  125. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  126. Kumar P, Kumar A, Cho KY, Das TK, Sudarsan V (2017) An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding, American Institute of Physics. AIP Adv 7:015103. https://doi.org/10.1063/1.4973535

    Article  CAS  Google Scholar 

  127. Wong K, Pickering S, Rudd C (2010) Recycled carbon fibre reinforced polymer composite for electromagnetic interference shielding. Compos A 41(6):693–702

    Article  CAS  Google Scholar 

  128. Rahaman M, Chaki T, Khastgir D (2012) Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through insitu polymerization of aniline in EVA matrix. Compos Sci Technol 72(13):1575–1580

    Article  CAS  Google Scholar 

  129. Su C, Xu L, Zhang C, Zhu J (2011) Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly (vinylidene fluoride) blends. Compos Sci Technol 71(7):1016–1021

    Article  CAS  Google Scholar 

  130. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Rubber Technology Centre, Indian Institute of Technology Kharagpur and Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia, for financial support to write this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafizur Rahaman or Dipak Khastgir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ram, R., Rahaman, M., Khastgir, D. (2019). Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of Polymer-Carbon Composites. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_10

Download citation

Publish with us

Policies and ethics