Skip to main content
Log in

Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of conductive carbon black (CCB) on the physico-mechanical, thermal, and electrical properties have been investigated by various characterization techniques. Physico-mechanical properties of the vulcanizates were studied with variation of filler loading, which revealed that the tensile strength increased up to 20 phr (parts per hundred rubber) CCB loading, whereas at higher filler loading it decreased marginally. Furthermore, tensile modulus, tear strength, and hardness gradually increased with increase in filler loading. The compression set and abrasion loss decreased with increasing CCB loading. The bound rubber content (Bdr) of unvulcanized rubber was found to increase significantly with increasing CCB content. The crosslink density increased, whereas the swelling decreased with CCB loading. The thermal stability of the vulcanizates evaluated by thermogravimetric analysis (TGA) showed a minor increment with increase in CCB content. It is observed from the dynamic mechanical thermal analysis (DMTA) that the storage modulus (E′), loss modulus (E″), and glass transition temperature (T g) of ethylene acrylic elastomer (AEM) matrix increased by incorporation of CCB. The dielectric relaxation characteristics of AEM vulcanizates such as dielectric permittivity (ε′), electrical conductivity (σ ac), and electric moduli (M′ and M″) have been studied as a function of frequency (101 to 106 Hz) at different filler loading. The variation of ε′ with frequency and filler loading was explained based on the interfacial polarization of the fillers within a heterogeneous system. The ε′ increased with increasing the CCB loading and it decreased with applied frequency. The frequency dependency of σ ac was investigated using conduction path theory and percolation threshold limit. The σ ac increased with increase in both CCB concentration and applied frequency. The M′ increased with applied frequency, however, it decreased above 30 phr filler. The M″ peak shifted towards higher frequency region and above 20 phr filler loading the peaks were not observed within the tested frequency region. The electromagnetic interference shielding effectiveness (EMISE) was studied in the X-band frequency region (8–12 GHz), which significantly improved with increase in CCB loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bokobza L (2007) Polymer 48:4907

    Article  CAS  Google Scholar 

  2. Sau KP, Chaki TK, Khastgir D (1999) J Appl Polym Sci 71:887

    Article  CAS  Google Scholar 

  3. Sridhar V, Choudhary RNP, Tripathy DK (2006) J Appl Polym Sci 102:1809

    Article  CAS  Google Scholar 

  4. Mahapatra SP, Sridhar V, Chaudhary RNP, Tripathy DK (2007) Polym Eng Sci 47:984

    Article  CAS  Google Scholar 

  5. Nanda M, Tripathy DK (2008) Express Polym Lett 2:855

    Article  CAS  Google Scholar 

  6. Rahaman M, Chaki TK, Khastgir D (2011) J Mater Sci 46:3989. doi:10.1007/s10853-011-5326-x

    Article  CAS  Google Scholar 

  7. Das NC, Chaki TK, Khastgir D (2002) Carbon 40:807

    Article  CAS  Google Scholar 

  8. Mahapatra SP, Sridhar V, Chaudhary RNP, Tripathy DK (2007) Polym Compos 28:657

    Article  CAS  Google Scholar 

  9. Tanrattanakul V, Bunchuay A (2007) J Appl Polym Sci 105:2036

    Article  CAS  Google Scholar 

  10. Li ZH, Zhang J, Chen SJ (2008) Express Polym Lett 2:695

    Article  CAS  Google Scholar 

  11. Wu Y-T, Stewart MA (2010) Ethylene acrylic elastomers. Encyclopedia of polymer science and technology. Interscience Wiley, New York

    Google Scholar 

  12. Karasek L, Sumita M (1996) J Mater Sci 31:281. doi: 10.1007/BF01139141

    Article  CAS  Google Scholar 

  13. Flory PJ, Rehner J (1943) J Chem Phys 11:512

    Article  CAS  Google Scholar 

  14. Huggins ML (1941) J Chem Phys 9:40

    Article  Google Scholar 

  15. Flory PJ (1941) J Chem Phys 9:660

    Article  CAS  Google Scholar 

  16. Kraus G (1963) J Appl Polym Sci 7:861

    Article  CAS  Google Scholar 

  17. Sridhar V, Gupta BR, Tripathy DK (2006) J Appl Polym Sci 10:715

    Article  Google Scholar 

  18. Roychoudhury A, De PP, Dutta NK, Choudhury N, Roychoydhury N, Haidar B, Vidal A (1993) Rubber Chem Technol 66:230

    Article  CAS  Google Scholar 

  19. Wolff S, Wang MJ (1992) Rubber Chem Technol 65:329

    Article  CAS  Google Scholar 

  20. Banik I, Bhowmick AK (2000) J Appl Polym Sci 76:2061

    Article  Google Scholar 

  21. Choi SS, Nah C, Jo BW (2003) Polym Int 52:1382

    Article  CAS  Google Scholar 

  22. Fukumori K, Kurauchi T, Kamigato O (1990) Polymer 31:713

    Article  CAS  Google Scholar 

  23. Kader MA, Bhowmick AK (2003) J Appl Polym Sci 89:1442

    Article  CAS  Google Scholar 

  24. Zhang J, Feng S, Ma Q (2003) J Appl Polym Sci 89:1548

    Article  CAS  Google Scholar 

  25. López-Manchado MA, Biagiotti J, Valentini L, Kenny JM (2004) J Appl Polym Sci 92:3394

    Article  Google Scholar 

  26. Psarras C, Manolakaki E, Tsangaris GM (2002) Composites 33:375

    Article  Google Scholar 

  27. Ku CC, Liepins R (1987) Chemical principles. Hanser Publishers, Munich

    Google Scholar 

  28. Yuan Q, Wu D (2010) J Appl Polym Sci 115:3527

    Article  CAS  Google Scholar 

  29. Li J, Kim J-K (2007) Compos Sci Technol 67:2114

    Article  CAS  Google Scholar 

  30. Jäger K-M, McQueen DH, Tchmutin IA, Ryvkina NG, Klüppel M (2001) J Phys 34:2699

    Google Scholar 

  31. Datta S, De SK, Kontos EG, Wefer JM, Wagner P, Vidal A (1996) Polymer 37:3431

    Article  CAS  Google Scholar 

  32. Patra A, Bisoyi DK (2010) J Mater Sci 45:5742. doi: 10.1007/s10853-010-4644-8

    Article  CAS  Google Scholar 

  33. Xi Y, Bin Y, Chiang CK, Matsuo M (2007) Carbon 45:1302

    Article  CAS  Google Scholar 

  34. Lvovich VF, Smiechowski MF (2005) J Electroanal Chem 577:67

    Article  Google Scholar 

  35. Colarnerr NF, Saha TN (1992) IEEE Trans Instrum 41:291

    Article  Google Scholar 

  36. Das NC, Khastgir D, Chaki TK, Chakraborty A (2000) Composites 31:1069

    Article  Google Scholar 

  37. Ye L, Zhang Y, Wang Z (2007) J Appl Polym Sci 105:3851

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to gratefully acknowledge the financial assistance supported by the Board of Research in Nuclear Sciences (BRNS), India to carry out the research work. Contract grant sponsor: Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Mumbai, India; contract grant number: 2008/35/8/BRNS/3096 dated 23/03/2009

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deba Kumar Tripathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, B.P., Naskar, K. & Tripathy, D.K. Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci 47, 2421–2433 (2012). https://doi.org/10.1007/s10853-011-6065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6065-8

Keywords

Navigation