Skip to main content
Log in

Microwave properties of the talc filled polypropylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A microwave bench operating in the frequency range 8–12 GHz (X-band) was used to investigate some of the electrical characteristics of the talc filled polypropylene composite. The impedance, return loss, and insertion loss are measured as a function of frequency in the X-band range. It was found that electromagnetic waves interact with the material via the impurities, inclusions and voids existing in the bulk composite. The impedance, return loss and insertion loss show relatively low frequency dependence. Also, the return loss and the impedance exhibit a resonance behaviour at 11.91 GHz. The results suggest that this composite material could be used in some microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Bigg, 15th Akron Polymer Conference on Advances in Polymer Processing, University of Akron, May 1984.Advances in Polymer Technology 4 (314) (1984) 255.

    Google Scholar 

  2. S. Radhakrishnan,J. Mater. Sci. 4 (1985) 1445.

    Google Scholar 

  3. L. Shaw Ming andR. D. Schile,ibid. 17 (1982) 2066.

    Google Scholar 

  4. S. J. Feltham, B. Yates andR. J. Martin,ibid. 17 (1982) 2309.

    Google Scholar 

  5. T. Kowalewski, R. Kalinski, A. Galeski andM. Kryszewski,Colloid Polymer Sci. 260 (1982) 260.

    Google Scholar 

  6. M. z. Kanovich, M. A. Koltunov, V. A. Popov, S. L. Roginskii andE. A. Lipatov,Mekhanika Polimerov 2 (1977) 225.

    Google Scholar 

  7. Z. Q. Q. Baker, MSc thesis, University of Jordan, 1987.

  8. T. S. Laverghetta, Microwave Measurements and Techniques, Artech House, Inc., Washington, 1981.

    Google Scholar 

  9. M. J. Hannasch andW. P. Robbins,IEEE Trans. Instr. Meas. IM-35 (2) (1986) 121.

    Google Scholar 

  10. C. Vittonia, N. C. Koon, P. Lubitz andJ. A. Geohegan,J. Appl. Phys. 55 (6) (1984) 1741.

    Google Scholar 

  11. M. N. Afsar, J. R. Birch andR. N. Clarke,Proc. IEEE 74 (1) (1986) 183.

    Google Scholar 

  12. A. K. Mallick andG. S. Sanyal,J. Appl. Phys. 51 (6) (1980) 3388.

    Google Scholar 

  13. D. M. Bigg, W. Mirick andD. E. Stutz,Polymer Testing 5 (1985) 169.

    Google Scholar 

  14. D. M. Bigg,J. Rheology 28 (5) (1984) 501.

    Google Scholar 

  15. S. O. Nelson, L. E. Stetson andC. W. Schlaphoff,IEEE Trans. Instr. Meas. IM-23 (4) (1974) 4555.

    Google Scholar 

  16. A. P. Jurkus andU. Stumper,Proc. IEEE 74 (1) (1986) 39.

    Google Scholar 

  17. P. Sheng, E. K. Sichel andJ. I. Gittleman,Phys. Rev. Lett. 40 (18) (1978) 1197.

    Google Scholar 

  18. E. K. Sickel, P. Sheng, J. I. Gittleman andS. Bozowski,Phys. Rev. B 24 (10) (1981) 24.

    Google Scholar 

  19. E. C. Burdette, F. L. Cain andSeals,IEEE Trans Microwave Theory Techniques MTT-28 (4) (1980) 414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M.S., Abdelazeez, M.K. & Zihlif, A.M. Microwave properties of the talc filled polypropylene. J Mater Sci 24, 1795–1800 (1989). https://doi.org/10.1007/BF01105707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105707

Keywords

Navigation