Skip to main content

Cultivation of Third Generation Biofuel

  • Chapter
  • First Online:
Third Generation Biofuels

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

Cultivation of microalgae in open ponds, closed ponds, photobioreactors and hybrid system are presented in this chapter. The most widely used photobioreactors – tubular, flat and column photobioreactors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulqader G, Barsanti L, Tredici MR (2000) Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J Appl Phycol 12:493–498

    Article  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    Article  Google Scholar 

  • Basanta KB, Varma A (2016) From algae to liquid fuels. In: Microbial resources for sustainable energy. Springer, Cham

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 205–218

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  Google Scholar 

  • Carlsson AS, van Beilen JB, Moller R, Clayton D (2007) Micro- and macro-algae: utility for industrial applications, 1st edn. CPL Press, Newbury

    Google Scholar 

  • Carmichael WW, Drapeau C, Anderson DM (2000) Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human ietary use. J Appl Phycol 12:585–595

    Article  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604

    Article  Google Scholar 

  • Chini Zittelli G, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp 225–266

    Chapter  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Demirbas A (2010a) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749

    Article  Google Scholar 

  • Demirbas A (2010b) Thermochemical processes. In: Biorefineries, Green energy and technology. Springer, London

    Chapter  Google Scholar 

  • Doucha J, Lıvansky K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    Article  Google Scholar 

  • Dragone G, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 1355–1366

    Google Scholar 

  • Dudeja S, Bhattacherjee AB, Chela-Flores J (2012) Antarctica as model for the possible emergence of life on Europa. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Cellular origin and life in extreme habitats and astrobiology. Springer, Dordrecht

    Google Scholar 

  • Fernandes BD, Mota A, Teixeira JA, Vicente AA (2015) Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2015.03.004

    Article  Google Scholar 

  • Geada P, Vasconcelos V, Vicente A, Fernandes B (2017) Microalgal biomass cultivation. Elsevier BV, Amsterdam

    Book  Google Scholar 

  • Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flatpanel photobioreactor with gas recirculation: anaerobic photoheterotrophic cultivation of a purple nonsulfur bacterium. Int J Hydrog Energy 27:1331–1338

    Article  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Article  Google Scholar 

  • IEA Bioenergy (2017) State of technology review – algae bioenergy an IEA bioenergy inter-task strategic project. http://www.ieabioenergy.com/wp-content/uploads/2017/01/IEA-Bioenergy-Algae-report-update-20170114.pdf

  • Jin L, Huang J, Che F (2011) Microalgae as feedstocks for biodiesel production. In: Biodiesel – feedstocks and processing technologies. IntechOpen Limited, London

    Google Scholar 

  • Khan SA (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13:2361–2372

    Article  Google Scholar 

  • Lee Y-K, Ding S-Y, Low C-S, Chang Y-C, Forday W, Chew P-C (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51

    Article  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  Google Scholar 

  • Liu ZW, Yu RQ, Guo Y (2000) Photobioreactors for cultivating microalgae. Modern Chem Ind 20(12):56–58

    Google Scholar 

  • Masojıdek J, Kopecky J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thinlayer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  Google Scholar 

  • Milner HW (1953) Rocking tray. In: Burlew JS (ed) Algal culture from laboratory to pilot plant, vol 600. Carnegie Institution, Washington, DC, p 108

    Google Scholar 

  • Molina Grima E (1999) Microalgae, mass culture methods. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 1753–1769

    Google Scholar 

  • Molina Grima E, Fern’andez J, Aci’en Fern’andez FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  Google Scholar 

  • Ramos De Ortega A, Roux JC (1986) Production of Chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10:141–156

    Article  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal cultures, biotechnology and applied phycology. Blackwell, Oxford, pp 125–177

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Samson R, LeDuy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 63:105–112

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx U, Mussgnug JH, Posten C (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  Google Scholar 

  • Setlık I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol Stud 1:11

    Google Scholar 

  • Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi CW, Chang JS (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215. https://doi.org/10.3390/ijms18010215

    Article  Google Scholar 

  • Soni RA, Sudhakar K, Rana RS (2017) Spirulina– from growth to nutritional product: a review. Trends Food Sci Technol 69:157–171

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  Google Scholar 

  • Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzym Microb Technol 7:474–487

    Article  Google Scholar 

  • Thein M (1993) Production of Spirulina in Myanmar (Burma). Bulletin de l’Institut OcĂ©anographique 12:175–178

    Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74

    Article  Google Scholar 

  • Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42:891–898

    Article  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 178–214

    Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. J Appl Phycol 4:221–231

    Article  Google Scholar 

  • Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. PCT Patent WO2004/074423

    Google Scholar 

  • Tredici MR, Biondi N, Chini Zittelli G, Ponis E, Rodolfi L (2009) Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G (eds) New technologies in aquaculture: improving production efficiency, quality and environmental management. Woodhead Publishing/CRC Press, Cambridge/Boca Raton, pp 610–676

    Chapter  Google Scholar 

  • Tredici MR, Chini Zittelli G, Rodolfi L (2010) Photobioreactors. In: Flickinger MC, Anderson S (eds) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 6. Wiley, Hoboken, pp 3821–3838

    Google Scholar 

  • TĂĽccar G, GĂĽngör C, Uludamar E, Aydin K (2015) The potential of microalgal biodiesel in Turkey. Energy Source Part B Econ Plann Policy 10(4):397–403

    Article  Google Scholar 

  • Ugwu CU (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  Google Scholar 

  • Um BH, Kim YS (2009) Review: a chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7

    Article  Google Scholar 

  • Wen Z, Liu J, Chen F (2011) Biofuel from microalgae. In: Moo-Young M (ed) Comprehensive biotechnology. Elsevier BV, Amsterdam

    Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:71–74

    Article  Google Scholar 

  • Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioproc Biosys Bioeng 25:97–101

    Article  Google Scholar 

  • cest2015.gnest.org

  • docplayer.net

  • documents.mx

  • jlakes.org

  • lrd.yahooapis.com

  • mro.massey.ac.nz

  • onlinelibrary.wiley.com

  • pdfs.semanticscholar.org

  • pubs.ext.vt.edu

  • repositorio.uchile.cl

  • research.ijcaonline.org

  • riuma.uma.es

  • www.bioaliment.ugal.ro

  • www.diva-portal.org

  • www.formatex.info

  • www.mdpi.com

  • www.oilgae.com

  • www.orau.gov

  • www.scribd.com/document/92252716/Micro-Algae

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2019). Cultivation of Third Generation Biofuel. In: Third Generation Biofuels. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-13-2378-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2378-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2377-5

  • Online ISBN: 978-981-13-2378-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics