Skip to main content

Tissue Scaffolds As a Local Drug Delivery System for Bone Regeneration

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Healing fractures resulting from bone disorders such as osteoporosis, osteoarthritis, osteomyelitis, and osteosarcoma remain a significant clinical challenge. In this chapter, we focus on scaffold based local drug delivery applications for promoting bone regeneration. For this purpose, we first review bone disorders, which require drug treatment and current fabrication techniques for bone tissue scaffold as a drug carrier. Next, we address the role of antimicrobial agents, anti-inflammatory drugs, anti-cancer drugs and bisphosphonates in promoting vascularized bone regeneration and discuss various local therapeutic delivery strategies for controlled and sustained drug delivery. Specifically, this review addresses the concept of drug loaded scaffold design and local drug release effects on bone regeneration. We conclude this review with a discussion of local drug delivery approaches to bone regeneration and discuss why it has the potential to be more efficient than traditional bone treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronescu E, Ficai A, Albu MG, Mitran V, Sonmez M, Ficai D, Ion R, Cimpean A (2013) Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technol Cancer Res Treat 12(4):275–284

    Article  CAS  PubMed  Google Scholar 

  2. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681

    Article  CAS  PubMed  Google Scholar 

  3. Aydemir Sezer U, Arslantunali D, Aksoy EA, Hasirci V, Hasirci N (2014) Poly (ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspheres for bone tissue engineering applications. J Appl Polym Sci 131(8)

    Google Scholar 

  4. Babaie E, Lin B, Bhaduri SB (2017) A new method to produce macroporous Mg-phosphate bone growth substitutes. Mater Sci Eng C 75:602–609

    Article  CAS  Google Scholar 

  5. Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metabol 97(2):311–325

    Article  CAS  Google Scholar 

  6. Barrère F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine 1(3):317–332

    PubMed  PubMed Central  Google Scholar 

  7. Bennet D, Marimuthu M, Kim S, An J (2012) Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery. Int J Nanomedicine 7:3399

    PubMed  PubMed Central  Google Scholar 

  8. Bhattacharyya S, Nair LS, Singh A, Krogman NR, Greish YE, Brown PW, Allcock HR, Laurencin CT (2006) Electrospinning of poly [bis (ethyl alanato) phosphazene] nanofibers. J Biomed Nanotechnol 2(1):36–45

    Article  CAS  Google Scholar 

  9. Bhattacharyya S, Kumbar SG, Khan YM, Nair LS, Singh A, Krogman NR, Brown PW, Allcock HR, Laurencin CT (2009) Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J Biomed Nanotechnol 5(1):69–75

    Article  CAS  PubMed  Google Scholar 

  10. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    Article  CAS  PubMed  Google Scholar 

  11. Bignon A, Chouteau J, Chevalier J, Fantozzi G, Carret J-P, Chavassieux P, Boivin G, Melin M, Hartmann D (2003) Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med 14(12):1089–1097

    Article  CAS  PubMed  Google Scholar 

  12. Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377(9783):2115–2126

    Article  PubMed  Google Scholar 

  13. Çalamak S, Erdoğdu C, Özalp M, Ulubayram K (2014) Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng C 43:11–20

    Article  CAS  Google Scholar 

  14. Calamak S, Aksoy EA, Erdogdu C, Sagıroglu M, Ulubayram K (2015) Silver nanoparticle containing silk fibroin bionanotextiles. J Nanopart Res 17(2):87

    Article  CAS  Google Scholar 

  15. Calamak S, Aksoy EA, Ertas N, Erdogdu C, Sagıroglu M, Ulubayram M (2015) Ag/silk fibroin nanofibers: effect of fibroin morphology on Ag+ release and antibacterial activity. Eur Polym J 67:99–112

    Article  CAS  Google Scholar 

  16. Calamak S, Shahbazi R, Eroglu I, Gultekinoglu M, Ulubayram K (2017) An overview of nanofiber-based antibacterial drug design. Expert Opin Drug Discovery 12:391–406

    Article  CAS  Google Scholar 

  17. Cancedda R (2009) Cartilage and bone extracellular matrix. Curr Pharm Des 15(12):1334–1348

    Article  PubMed  Google Scholar 

  18. Chapurlat R, Delmas P (2004) New treatments in osteoporosis. Revue Med Interne 25:S573–S579

    Article  Google Scholar 

  19. Chen Y, Kawazoe N, Chen G (2017) Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater 67:341–353

    Article  PubMed  CAS  Google Scholar 

  20. Cheng T, Qu H, Zhang G, Zhang X (2017) Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol:1–13

    Google Scholar 

  21. Cicuéndez M, Doadrio JC, Hernández A, Portolés MT, Izquierdo-Barba I, Vallet-Regí M (2018) Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater 65:450–461

    Article  PubMed  CAS  Google Scholar 

  22. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69

    Article  PubMed  CAS  Google Scholar 

  23. Cutolo M, Berenbaum F, Hochberg M, Punzi L, Reginster J-Y (2015) Commentary on recent therapeutic guidelines for osteoarthritis. Semin Arthritis Rheum 44(6):611–617 Elsevier

    Article  PubMed  Google Scholar 

  24. Decambron A, Manassero M, Bensidhoum M, Lecuelle B, Logeart-Avramoglou D, Petite H, Viateau V (2017) A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 6(4):208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Denry I, Holloway JA (2014) Low temperature sintering of fluorapatite glass-ceramics. Dent Mater 30(2):112–121

    Article  CAS  PubMed  Google Scholar 

  26. Denry I, Goudouri OM, Harless J, Holloway JA (2018) Rapid vacuum sintering: a novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 106(1):291–299

    Article  CAS  PubMed  Google Scholar 

  27. Devin JE, Attawia MA, Laurencin CT (1996) Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. J Biomater Sci Polym Ed 7(8):661–669

    Article  CAS  PubMed  Google Scholar 

  28. Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86(1):77–91

    Article  PubMed  Google Scholar 

  29. Durucan C, Brown PW (2000) Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation. J Biomed Mater Res A 51(4):726–734

    Article  CAS  Google Scholar 

  30. Ezra A, Golomb G (2000) Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Adv Drug Deliv Rev 42(3):175–195

    Article  CAS  PubMed  Google Scholar 

  31. Farooq A, Yar M, Khan AS, Shahzadi L, Siddiqi SA, Mahmood N, Rauf A, Manzoor F, Chaudhry AA, ur Rehman I (2015) Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C 56:104–113

    Article  CAS  Google Scholar 

  32. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol Mech Dis 6:121–145

    Article  CAS  Google Scholar 

  33. Fischer P, Romano V, Weber H-P, Karapatis N, Boillat E, Glardon R (2003) Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater 51(6):1651–1662

    Article  CAS  Google Scholar 

  34. Florencio-Silva R, Sasso GR d S, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31(7):1245–1256

    Article  CAS  Google Scholar 

  36. Gitelis S, Brebach GT (2002) The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg 10(1):53–60

    Article  Google Scholar 

  37. Glyn-Jones S, Palmer A, Price A, Vincent T, Weinans H, Carr AJ (2015) Osteoarthritis. Lancet 386(9991):376–387

    Article  CAS  PubMed  Google Scholar 

  38. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57(2):171–185

    Article  CAS  PubMed  Google Scholar 

  39. Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Guo J, Zhang Q, Li J, Liu Y, Hou Z, Chen W, Jin L, Tian Y, Ju L, Liu B (2017) Local application of an ibandronate/collagen sponge improves femoral fracture healing in ovariectomized rats. PLoS One 12(11):e0187683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hamadouche M, Sedel L (2000) Ceramics in orthopaedics. Bone Joint J 82(8):1095–1099

    Article  CAS  Google Scholar 

  42. Hatzenbuehler J, Pulling TJ (2011) Diagnosis and management of osteomyelitis. Am Fam Physician 84(9):1027–1033

    PubMed  Google Scholar 

  43. Heino TJ, Hentunen TA, Väänänen HK (2004) Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 294(2):458–468

    Article  CAS  PubMed  Google Scholar 

  44. Henderson PW, Singh SP, Krijgh DD, Yamamoto M, Rafii DC, Sung JJ, Rafii S, Rabbany SY, Spector JA (2011) Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen 19(3):420–425

    Article  PubMed  Google Scholar 

  45. Hess U, Shahabi S, Treccani L, Streckbein P, Heiss C, Rezwan K (2017) Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy. Mater Sci Eng C 77:427–435

    Article  CAS  Google Scholar 

  46. Hirabayashi H, Fujisaki J (2003) Bone-specific drug delivery systems. Clin Pharmacokinet 42(15):1319–1330

    Article  CAS  PubMed  Google Scholar 

  47. Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32(36):9622–9629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iacono MV (2007) Osteoporosis: a national public health priority. J Perianesth Nurs 22(3):175–183

    Article  PubMed  Google Scholar 

  49. Iannazzo D, Pistone A, Espro C, Galvagno S (2015) Drug delivery strategies for bone tissue regeneration. In: Panseri S, Taraballi F, Cunha C (eds) Biomimetic approaches for tissue healing. OMICS International, Foster City, pp 1–39

    Google Scholar 

  50. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater 30:232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iseme RA, Mcevoy M, Kelly B, Agnew L, Walker FR, Attia J (2017) Is osteoporosis an autoimmune mediated disorder? Bone Rep 7:121–131

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang S, Zhang Y, Shu Y, Wu Z, Cao W, Huang W (2017) Amino-functionalized mesoporous bioactive glass for drug delivery. Biomed Mater 12(2):025017

    Article  PubMed  Google Scholar 

  53. Jo YS, Rizzi SC, Ehrbar M, Weber FE, Hubbell JA, Lutolf MP (2010) Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri-amino acid peptides. J Biomed Mater Res A 93(3):870–877

    PubMed  Google Scholar 

  54. Kim H-W, Knowles JC, Kim H-E (2004) Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25(7–8):1279–1287

    Article  CAS  PubMed  Google Scholar 

  55. Kim HW, Knowles JC, Kim HE (2004) Development of hydroxyapatite bone scaffold for controlled drug release via poly (ε-caprolactone) and hydroxyapatite hybrid coatings. J Biomed Mater Res B Appl Biomater 70(2):240–249

    Article  PubMed  CAS  Google Scholar 

  56. Kim H-W, Knowles JC, Kim H-E (2005) Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med 16(3):189–195

    Article  PubMed  CAS  Google Scholar 

  57. Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kini U, Nandeesh B (2012) Physiology of bone formation, remodeling, and metabolism. In: Radionuclide and hybrid bone imaging. Springer, Berlin, pp 29–57

    Chapter  Google Scholar 

  59. Kokubo T, Ito S, Huang Z, Hayashi T, Sakka S, Kitsugi T, Yamamuro T (1990) Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res A 24(3):331–343

    Article  CAS  Google Scholar 

  60. Kothapalli C, Wei M, Vasiliev A, Shaw M (2004) Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater 52(19):5655–5663

    Article  CAS  Google Scholar 

  61. Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN (2010) Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 27(8):1659–1676

    Article  CAS  PubMed  Google Scholar 

  62. Langton C, Whitehead M, Langton D, Langley G (1997) Development of a cancellous bone structural model by stereolithography for ultrasound characterisation of the calcaneus. Med Eng Phys 19(7):599–604

    Article  CAS  PubMed  Google Scholar 

  63. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328

    Article  CAS  PubMed  Google Scholar 

  64. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431):369–379

    Article  CAS  PubMed  Google Scholar 

  65. Liao S, Cui F, Zhang W, Feng Q (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 69(2):158–165

    Article  CAS  PubMed  Google Scholar 

  66. Lienemann PS, Karlsson M, Sala A, Wischhusen HM, Weber FE, Zimmermann R, Weber W, Lutolf MP, Ehrbar M (2013) A versatile approach to engineering biomolecule-presenting cellular microenvironments. Adv Healthc Mater 2(2):292–296

    Article  CAS  PubMed  Google Scholar 

  67. Lima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E (2014) Recommendations for the treatment of osteomyelitis. Braz J Infect Dis 18(5):526–534

    Article  PubMed  Google Scholar 

  68. Lin C-C, Fu S-J, Lin Y-C, Yang I-K, Gu Y (2014) Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate. Int J Biol Macromol 68:39–47

    Article  CAS  PubMed  Google Scholar 

  69. Locs J, Li W, Sokolova M, Roether JA, Loca D, Boccaccini AR (2015) Zoledronic acid impregnated and poly (L-lactic acid) coated 45S5 Bioglass®-based scaffolds. Mater Lett 156:180–182

    Article  CAS  Google Scholar 

  70. Long M, Rack H (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18):1621–1639

    Article  CAS  PubMed  Google Scholar 

  71. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G (2006) Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 32(6):423–436

    Article  PubMed  Google Scholar 

  72. Luetke A, Meyers PA, Lewis I, Juergens H (2014) Osteosarcoma treatment–where do we stand? A state of the art review. Cancer Treat Rev 40(4):523–532

    Article  PubMed  Google Scholar 

  73. McLaren JS, White L, Cox H, Ashraf W, Rahman C, Blunn G, Goodship A, Quirk R, Shakesheff KM, Bayston R (2014) A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. Eur Cell Mater 27:332–349

    Article  CAS  PubMed  Google Scholar 

  74. Meng Z, Zheng W, Li L, Zheng Y (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125(3):606–611

    Article  CAS  Google Scholar 

  75. Mi H-Y, Salick MR, Jing X, Jacques BR, Crone WC, Peng X-F, Turng L-S (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33(8):4767–4776

    Article  CAS  Google Scholar 

  76. Mitra D, Whitehead J, Yasui OW, Leach JK (2017) Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials 146:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mouriño V, Boccaccini AR (2009) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface: rsif20090379

    Google Scholar 

  78. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S (2009) The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45(1):4–16

    Article  CAS  PubMed  Google Scholar 

  79. Nguyen BNB, Moriarty RA, Kamalitdinov T, Etheridge JM, Fisher JP (2017) Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res A 105(4):1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4(5):445–454

    Article  CAS  Google Scholar 

  81. Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325

    Article  Google Scholar 

  82. Pehlivan SB, Yavuz B, Çalamak S, Ulubayram K, Kaffashi A, Vural I, Çakmak HB, Durgun ME, Denkbaş EB, Ünlü N (2015) Preparation and in vitro/in vivo evaluation of cyclosporin a-loaded nanodecorated ocular implants for subconjunctival application. J Pharm Sci 104(5):1709–1720

    Article  CAS  PubMed  Google Scholar 

  83. Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158(2):353–361

    Article  CAS  Google Scholar 

  84. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  85. Pirhonen E, Moimas L, Haapanen J (2003) Porous bioactive 3-D glass fiber scaffolds for tissue engineering applications manufactured by sintering technique. Key Eng Mater 240–242: 237–240. Trans Tech Publications

    Google Scholar 

  86. Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4):1139–1151

    Article  CAS  PubMed  Google Scholar 

  87. Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560

    CAS  PubMed  Google Scholar 

  88. Prabaharan M, Jayakumar R (2009) Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol 44(4):320–325

    Article  CAS  PubMed  Google Scholar 

  89. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45(8):1353–1358

    CAS  PubMed  Google Scholar 

  91. Ramchandani M, Robinson D (1998) In vitro and in vivo release of ciprofloxacin from PLGA 50: 50 implants. J Control Release 54(2):167–175

    Article  CAS  PubMed  Google Scholar 

  92. Raymond AK, Jaffe N (2009) Osteosarcoma multidisciplinary approach to the management from the pathologist’s perspective. In: Pediatric and adolescent osteosarcoma. Springer, New York, pp 63–84

    Chapter  Google Scholar 

  93. Reichert JC, Hutmacher DW (2011) Bone tissue engineering. In: Tissue engineering. Springer, Berlin/Heidelberg, pp 431–456

    Chapter  Google Scholar 

  94. Rezwan K, Chen Q, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  PubMed  Google Scholar 

  95. Ritter J, Bielack S (2010) Osteosarcoma. Annals Oncol 21(suppl_7):vii320–vii325

    Google Scholar 

  96. Rivron NC, Raiss CC, Liu J, Nandakumar A, Sticht C, Gretz N, Truckenmüller R, Rouwkema J, van Blitterswijk CA (2012) Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation. Proc Natl Acad Sci 109(12):4413–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  PubMed  Google Scholar 

  98. Saiz E, Zimmermann EA, Lee JS, Wegst UG, Tomsia AP (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29(1):103–115

    Article  CAS  PubMed  Google Scholar 

  99. Sarıgöl E, Bozdağ Pehlivan S, Ekizoğlu M, Sağıroğlu M, Çalış S (2017) Design and evaluation of gamma-sterilized vancomycin hydrochloride-loaded poly (ɛ-caprolactone) microspheres for the treatment of biofilm-based medical device-related osteomyelitis. Pharm Dev Technol 22(6):706–714

    Article  PubMed  CAS  Google Scholar 

  100. Sarıgöl E, Ekizoğlu M, Pehlivan SB, Bodur E, Sağıroğlu M, Çalış S (2018) A thermosensitive gel loaded with an enzyme and an antibiotic drug for the treatment of periprosthetic joint infection. J Drug Delivery Sci Technol 43:423–429

    Article  CAS  Google Scholar 

  101. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(2):S105–S112

    Article  PubMed  Google Scholar 

  102. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310

    Article  CAS  PubMed  Google Scholar 

  103. Shao H, Sun M, Zhang F, Liu A, He Y, Fu J, Yang X, Wang H, Gou Z (2018) Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res 97(1):68–76

    Article  CAS  PubMed  Google Scholar 

  104. Sidney LE, Heathman TR, Britchford ER, Abed A, Rahman CV, Buttery LD (2014) Investigation of localized delivery of diclofenac sodium from poly (D, L-lactic acid-co-glycolic acid)/poly (ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Eng A 21(1–2):362–373

    Google Scholar 

  105. Somayaji B, Jariwala U, Jayachandran P, Vidyalakshmi K, Dudhani RV (1998) Evaluation of antimicrobial efficacy and release pattern of tetracycline and metronidazole using a local delivery system. J Periodontol 69(4):409–413

    Article  CAS  PubMed  Google Scholar 

  106. Song Y-Y, Schmidt-Stein F, Bauer S, Schmuki P (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131(12):4230–4232

    Article  CAS  PubMed  Google Scholar 

  107. Soundrapandian C, Sa B, Datta S (2009) Organic–inorganic composites for bone drug delivery. AAPS PharmSciTech 10(4):1158–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    Article  CAS  Google Scholar 

  109. Sun M, Chen M, Wang M, Hansen J, Baatrup A, Dagnaes-Hansen F, Rölfing J, Jensen J, Lysdahl H, Li H (2016) In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold. RSC Adv 6(80):76237–76245

    Article  CAS  Google Scholar 

  110. Suresh S, Saifuddin A (2007) Radiological appearances of appendicular osteosarcoma: a comprehensive pictorial review. Clin Radiol 62(4):314–323

    Article  CAS  PubMed  Google Scholar 

  111. Ta HT, Dass CR, Choong PF, Dunstan DE (2009) Osteosarcoma treatment: state of the art. Cancer Metastasis Rev 28(1–2):247–263

    Article  PubMed  Google Scholar 

  112. Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17(9):2317–2329

    Article  CAS  Google Scholar 

  113. Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27(2):302–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tarafder S, Bose S (2014) Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces 6(13):9955–9965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7(8):631–641

    Article  CAS  PubMed  Google Scholar 

  116. Vivanco J, Slane J, Nay R, Simpson A, Ploeg H-L (2011) The effect of sintering temperature on the microstructure and mechanical properties of a bioceramic bone scaffold. J Mech Behav Biomed Mater 4(8):2150–2160

    Article  CAS  PubMed  Google Scholar 

  117. Vivanco J, Aiyangar A, Araneda A, Ploeg H-L (2012) Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J Mech Behav Biomed Mater 9:137–152

    Article  CAS  PubMed  Google Scholar 

  118. Wang DA, Williams CG, Yang F, Elisseeff JH (2004) Enhancing the tissue-biomaterial Interface: tissue-initiated integration of biomaterials. Adv Funct Mater 14(12):1152–1159

    Article  CAS  Google Scholar 

  119. Wang X, Hunter D, Xu J, Ding C (2015) Metabolic triggered inflammation in osteoarthritis. Osteoarthr Cartil 23(1):22–30

    Article  CAS  Google Scholar 

  120. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  CAS  PubMed  Google Scholar 

  121. Wiesmann H, Meyer U, Plate U, Hohling H (2005) Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol 242:121–156

    Article  CAS  PubMed  Google Scholar 

  122. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  PubMed  Google Scholar 

  123. Woesz A, Rumpler M, Stampfl J, Varga F, Fratzl-Zelman N, Roschger P, Klaushofer K, Fratzl P (2005) Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater Sci Eng C 25(2):181–186

    Article  CAS  Google Scholar 

  124. Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159(1):14–26

    Article  CAS  PubMed  Google Scholar 

  125. Wolstenholme GEW, O’Connor M (2009) Bone structure and metabolism. Wiley, Chichester

    Google Scholar 

  126. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276(2):461–465

    Article  CAS  PubMed  Google Scholar 

  127. Yang S, Leong K-F, Du Z, Chua C-K (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Hascicek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarigol-Calamak, E., Hascicek, C. (2018). Tissue Scaffolds As a Local Drug Delivery System for Bone Regeneration. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_25

Download citation

Publish with us

Policies and ethics