Skip to main content

Bone Tissue Engineering

  • Chapter
  • First Online:
Tissue Engineering

Abstract

Bone is a complex, living, constantly changing tissue. Bone consists of cancellous and cortical bone. This architecture allows the skeleton to perform its essential mechanical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrahamsson P-A. 2004, Pathophysiology of Bone Metastases in Prostate Cancer, European Urology Supplements, 3: 3-9

    Article  CAS  Google Scholar 

  2. Arkudas A, Beier JP, et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007;13:1549–60.

    Article  CAS  PubMed  Google Scholar 

  3. Auquier P, Macquart-Moulin G, et al. Comparison of anxiety, pain and discomfort in two procedures of hematopoietic stem cell collection: leukacytapheresis and bone marrow harvest. Bone Marrow Transplant. 1995;16:541–7.

    CAS  PubMed  Google Scholar 

  4. Aust L, Devlin B, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.

    Article  CAS  PubMed  Google Scholar 

  5. Babister JC, Hails LA, et al. The effect of pre-coating human bone marrow stromal cells with hydroxyapatite/amino acid nanoconjugates on osteogenesis. Biomaterials. 2009;30:3174–82.

    Article  CAS  PubMed  Google Scholar 

  6. Bacigalupo A, Tong J, et al. Bone marrow harvest for marrow transplantation: effect of multiple small (2 ml) or large (20 ml) aspirates. Bone Marrow Transplant. 1992;9:467–70.

    CAS  PubMed  Google Scholar 

  7. Bajada S, Harrison PE, et al. Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br. 2007;89:1382–6.

    Article  CAS  PubMed  Google Scholar 

  8. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.

    Google Scholar 

  9. Becker JL, Blanchard DK. Characterization of primary breast carcinomas grown in three-dimensional cultures. J Surg Res. 2007;142:256–62.

    Article  CAS  PubMed  Google Scholar 

  10. Bloemers FW, Blokhuis TJ, et al. Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater. 2003;66:526–31.

    Article  PubMed  Google Scholar 

  11. Boyce T, Edwards J, et al. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am. 1999;30:571–81.

    Article  CAS  PubMed  Google Scholar 

  12. Casimiro S, Guise TA, et al. The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol. 2009;310:71–81.

    Article  CAS  PubMed  Google Scholar 

  13. Cassell OC, Morrison WA, et al. The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann N Y Acad Sci. 2001;944:429–42.

    Article  CAS  PubMed  Google Scholar 

  14. Ceruso M, Taddei F, et al. Vascularised fibula graft inlaid in a massive bone allograft: considerations on the bio-mechanical behaviour of the combined graft in segmental bone reconstructions after sarcoma resection. Injury. 2008;39 suppl 3:S68–74.

    Article  PubMed  Google Scholar 

  15. Clohisy DR, Ramnaraine ML. Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res. 1998;16:660–6.

    Article  CAS  PubMed  Google Scholar 

  16. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28:5058–67.

    Article  CAS  PubMed  Google Scholar 

  17. Dawson JI, Oreffo RO. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys. 2008;473:124–31.

    Article  CAS  PubMed  Google Scholar 

  18. den Boer FC, Wippermann BW, et al. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res. 2003;21:521–8.

    Article  Google Scholar 

  19. Edwards PC, Ruggiero S, et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther. 2005;12:75–86.

    Article  CAS  PubMed  Google Scholar 

  20. Egermann M, Goldhahn J, et al. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005;16 suppl 2:S129–38.

    Article  PubMed  Google Scholar 

  21. Endres M, Hutmacher DW, et al. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 2003;9:689–702.

    Article  CAS  PubMed  Google Scholar 

  22. Erol OO, Spira M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 1979;30:530–1.

    CAS  PubMed  Google Scholar 

  23. Ferguson CM, Miclau T, et al. Common molecular pathways in skeletal morphogenesis and repair. Ann N Y Acad Sci. 1998;857:33–42.

    Article  CAS  PubMed  Google Scholar 

  24. Fleming Jr JE, Cornell CN, et al. Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am. 2000;31:357–74.

    Article  PubMed  Google Scholar 

  25. Friedlaender GE, Perry CR, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83-A(suppl 1):S151–8.

    Google Scholar 

  26. Gangji V, Hauzeur JP, et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am. 2004;86-A:1153–60.

    Google Scholar 

  27. Gao TJ, Lindholm TS, et al. The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop. 1997;21:194–200.

    Google Scholar 

  28. Gill DR, Ireland DC, et al. The prefabrication of a bone graft in a rat model. J Hand Surg [Am]. 1998;23:312–21.

    Article  CAS  Google Scholar 

  29. Gomes ME, Reis RL, et al. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials. 2001;22:1911–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gugala Z, Gogolewski S. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma. 1999;13:187–95.

    Article  CAS  PubMed  Google Scholar 

  31. Gugala Z, Gogolewski S. Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury. 2002;33 suppl 2:B71–6.

    Article  PubMed  Google Scholar 

  32. Halpern J, Lynch C, et al. The application of a murine bone bioreactor as a model of tumor: bone interaction. Clin Exp Metastasis. 2006;23:345–56.

    Article  PubMed  Google Scholar 

  33. Hausman DB, DiGirolamo M, et al. The biology of white adipocyte proliferation. Obes Rev. 2001;2:239–54.

    Article  CAS  PubMed  Google Scholar 

  34. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res. 2002;405:14–23.

    Google Scholar 

  35. Hofer SO, Knight KM, et al. Increasing the volume of vascularized tissue formation in engineered constructs: an experimental study in rats. Plast Reconstr Surg. 2003;111:1186–92; discussion 1193–4.

    Google Scholar 

  36. Hollister SJ. Scaffold engineering: a bridge to where? Biofabrication. 2009;1:1–14.

    Article  Google Scholar 

  37. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  38. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–24.

    Article  CAS  PubMed  Google Scholar 

  39. Hutmacher DW. Regenerative medicine will impact, but not replace, the medical device industry. Expert Rev Med Devices. 2006;3:409–12.

    Article  PubMed  Google Scholar 

  40. Hutmacher DW, Horch RE, et al. Translating tissue engineering technology platforms into cancer research. J Cell Mol Med. 2009;13:1417–27.

    Article  CAS  PubMed  Google Scholar 

  41. Hutmacher DW, Schantz JT, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.

    Article  CAS  PubMed  Google Scholar 

  42. Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng. 2003;9 suppl 1:S45–64.

    Article  CAS  PubMed  Google Scholar 

  43. Hutmacher DW, Sittinger M, et al. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22:354–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kawaguchi H, Hayashi H, et al. [Cell transplantation for periodontal diseases. A novel periodontal tissue regenerative therapy using bone marrow mesenchymal stem cells]. Clin Calcium. 2005;15:99–104.

    Google Scholar 

  45. Kawaguchi H, Hirachi A, et al. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol. 2004;75:1281–7.

    Article  PubMed  Google Scholar 

  46. Kawate K, Yajima H, et al. Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs. 2006;30:960–2.

    Article  CAS  PubMed  Google Scholar 

  47. Khan SN, Cammisa Jr FP, et al. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13:77–86.

    PubMed  Google Scholar 

  48. Khouri RK, Upton J, et al. Principles of flap prefabrication. Clin Plast Surg. 1992;19:763–71.

    CAS  PubMed  Google Scholar 

  49. Kneser U, Polykandriotis E, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006;12:1721–31.

    Article  CAS  PubMed  Google Scholar 

  50. Kneser U, Stangenberg L, et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J Cell Mol Med. 2006;10:695–707.

    Article  CAS  PubMed  Google Scholar 

  51. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.

    Article  CAS  PubMed  Google Scholar 

  52. Kuperwasser C, Dessain S, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65:6130–8.

    Article  CAS  PubMed  Google Scholar 

  53. Le AX, Miclau T, et al. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res. 2001;19:78–84.

    Article  CAS  PubMed  Google Scholar 

  54. Lee JH, Cornelius CP, et al. Neo-osseous flaps using demineralized allogeneic bone in a rat model. Ann Plast Surg. 2000;44:195–204.

    Article  CAS  PubMed  Google Scholar 

  55. Lickorish D, Guan L, et al. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: evolution of scaffold design. Biomaterials. 2007;28:1495–502.

    Article  CAS  PubMed  Google Scholar 

  56. Liu G, Zhao L, et al. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med. 2008;19:2367–76.

    Article  CAS  PubMed  Google Scholar 

  57. Maissen O, Eckhardt C, et al. Mechanical and radiological assessment of the influence of rhTGFbeta-3 on bone regeneration in a segmental defect in the ovine tibia: pilot study. J Orthop Res. 2006;24:1670–8.

    Article  CAS  PubMed  Google Scholar 

  58. Mastrogiacomo M, Corsi A, et al. Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng. 2006;12:1261–73.

    Article  CAS  PubMed  Google Scholar 

  59. Meinel L, Zoidis E, et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone. 2003;33:660–72.

    Article  CAS  PubMed  Google Scholar 

  60. Mian R, Morrison WA, et al. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 2000;6:595–603.

    Article  CAS  PubMed  Google Scholar 

  61. Moreau JE, Anderson K, et al. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res. 2007;67:10304–8.

    Article  CAS  PubMed  Google Scholar 

  62. Muschler GF, Nakamoto C, et al. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86-A:1541–58.

    Google Scholar 

  63. Niemeyer P, Schonberger TS, et al. Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Eng A. 2010;16:33–43.

    Google Scholar 

  64. Nishimori M, Yamada Y, et al. Health-related quality of life of unrelated bone marrow donors in Japan. Blood. 2002;99:1995–2001.

    Article  CAS  PubMed  Google Scholar 

  65. Noth U, Reichert J, et al. Cell based therapy for the treatment of femoral head necrosis. Orthopade. 2007;36:466–71.

    Article  CAS  PubMed  Google Scholar 

  66. Oreffo RO, Cooper C, et al. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev. 2005;1:169–78.

    Article  CAS  PubMed  Google Scholar 

  67. Patterson TE, Kumagai K, et al. Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am. 2008;90 suppl 1:111–9.

    Article  PubMed  Google Scholar 

  68. Pearce AI, Richards RG, et al. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.

    CAS  PubMed  Google Scholar 

  69. Pienta KJ, Abate-Shen C, et al. The current state of preclinical prostate cancer animal models. Prostate. 2008;68:629–39.

    Article  PubMed  Google Scholar 

  70. Quarto R, Mastrogiacomo M, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385–6.

    Article  CAS  PubMed  Google Scholar 

  71. Reichert JC, Saifzadeh S, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009;30:2149–63.

    Article  CAS  PubMed  Google Scholar 

  72. Ristiniemi J, Flinkkila T, et al. RhBMP-7 accelerates the healing in distal tibial fractures treated by external fixation. J Bone Joint Surg Br. 2007;89:265–72.

    Article  CAS  PubMed  Google Scholar 

  73. Rozen N, Bick T, et al. Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone. 2009;45:918–924.

    Google Scholar 

  74. Rupnick MA, Panigrahy D, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA. 2002;99:10730–5.

    Article  CAS  PubMed  Google Scholar 

  75. Sarkar MR, Augat P, et al. Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials. 2006;27:1817–23.

    Article  CAS  PubMed  Google Scholar 

  76. Schantz JT, Lim TC, et al. Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Neurosurgery. 2006;58:ONS-E176; discussion ONS-E176.

    Google Scholar 

  77. Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62:724–9.

    Article  PubMed  Google Scholar 

  78. Schipper J, Ridder GJ, et al. The preconditioning and prelamination of pedicled and free microvascular anastomised flaps with the technique of vacuum assisted closure. Laryngorhinootologie. 2003;82:421–7.

    Article  CAS  PubMed  Google Scholar 

  79. Sousa RA, Reis RL, et al. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies. J Mater Sci Mater Med. 2003;14:475–87.

    Article  CAS  PubMed  Google Scholar 

  80. Steinert A, Rackwitz L, Eulert J, et al. Cell-based therapy for the treatment of femoral head necrosis. Orthopade. 2007;36(5):466–71.

    Article  PubMed  Google Scholar 

  81. Tanaka Y, Sung KC, et al. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg. 2003;112:1636–44.

    Article  PubMed  Google Scholar 

  82. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103:655–63.

    Article  CAS  PubMed  Google Scholar 

  83. Vacanti CA, Bonassar LJ, et al. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001;344:1511–4.

    Article  CAS  PubMed  Google Scholar 

  84. Wang M, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials. 2001;22:1311–20.

    Article  CAS  PubMed  Google Scholar 

  85. Warnke PH, Springer IN, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.

    Article  CAS  PubMed  Google Scholar 

  86. Yamada Y, Ueda M, et al. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent. 2006;26:363–9.

    PubMed  Google Scholar 

  87. Zuk PA, Zhu M, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Reichert, J.C., Hutmacher, D.W. (2011). Bone Tissue Engineering. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_21

Download citation

Publish with us

Policies and ethics