Skip to main content

Physiology of Bone Formation, Remodeling, and Metabolism

  • Chapter
  • First Online:
Radionuclide and Hybrid Bone Imaging

Abstract

Bone, a highly specialized supporting framework of the body, is characterized by its rigidity and hardness and is endowed with the power of regeneration and repair. Its formation is carried out by osteoprogenitor cells powered by Wnt pathway by two important methods, namely, intramembranous ossification, wherein bone is laid down into the primitive connective tissue (mesenchyme) resulting in the formation of bones as seen in skull, clavicle, and mandible, while endochondral ossification is characterized by a cartilage model which acts as a precursor as in femur, tibia, humerus, and radius. To meet the requirements of skeletal growth and mechanical function, bone undergoes dynamic remodeling by a coupled process of bone resorption by osteoclasts and reformation by osteoblasts.

Bone metabolism is under constant regulation by a host of hormonal and local factors. The calcitropic hormones, namely, parathyroid hormone, vitamin D, and calcitonin, affect the bone metabolism the most in addition to other hormones like insulin, growth hormone, gonadal hormones, cytokines, and growth factors.

The bone metabolism can be monitored by markers such as alkaline phosphatase and urinary hydroxyproline. Other markers include products associated with bone formation, such as osteocalcin, osteonectin, and N- and C-terminal pro-peptides of type I collagen, or with bone resorption, namely, acid phosphatase, free gamma-carboxyglutamate, and hydroxylysine glycosides, especially galactosyl hydroxylysine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  PubMed  CAS  Google Scholar 

  • Baylink DJ, Finkelman RD, Mohan S (1993) Growth factors to stimulate bone formation. J Bone Miner Res 8:565–572

    Article  Google Scholar 

  • Blair HC, Teitebaum SL, Ghiselli R et al (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  • Bonewald LF (1999) Establishment and characterization of an osteocyte-like cell line, MLO-Y4. J Bone Miner Metab 17:61–65

    Article  PubMed  CAS  Google Scholar 

  • Bonewald LF, Dallas SL (1994) Role of active and latent transforming growth factor-β in bone formation. J Cell Biochem 55:350–357

    Article  PubMed  CAS  Google Scholar 

  • Bonewald LF, Mundy GR (1990) Role of transforming growth factor beta in bone remodeling. Clin Orthop Relat Res 2S:35–40

    Google Scholar 

  • Boulpaep EL, Boron WF (2005) Medical physiology: a cellular and molecular approach. Saunders, Philadelphia, pp 1089–1091

    Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  • Brighton CT, Hunt RM (1986) Histochemical localization of calcium in the fracture callus with potassium pyroantimonate: possible role of chondrocyte mitochondrial calcium in callus calcification. J Bone Joint Surg 68-A:703–715

    CAS  Google Scholar 

  • Brighton CT, Hunt RM (1991) Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg 73-A:832–847

    Google Scholar 

  • Brighton CT, Sugioka Y, Hunt RM (1973) Cytoplasmic structures of epiphyseal plate chondrocytes; quantitative evaluation using electron micrographs of rat costochondral junctions with specific reference to the fate of hypertrophic cells. J Bone Joint Surg 55:771–784

    PubMed  CAS  Google Scholar 

  • Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–339

    Article  PubMed  CAS  Google Scholar 

  • Bruzzaniti A, Baron R (2007) Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 7: 123–139

    Article  Google Scholar 

  • Burr DB (2002) Targeted and nontargeted remodeling. Bone 30:2–4

    Article  PubMed  CAS  Google Scholar 

  • Cadigan KM, Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119:395–402

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Lopes J, Canhao H, Fonseca JE (2007) Osteoblasts and bone formation. Acta Reumatol Port 32:103–110

    PubMed  Google Scholar 

  • Canalis E, McCarthy TL, Centrella M (1989) The role of growth factors in skeletal remodeling. Endocrinol Metab Clin North Am 18:903–918

    PubMed  CAS  Google Scholar 

  • Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    Article  PubMed  CAS  Google Scholar 

  • Charles JM, Key LL (1998) Developmental spectrum of children with congenital osteopetrosis. J Pediatr 132:371–374

    Article  PubMed  CAS  Google Scholar 

  • Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM Jr (2006) The new bone biology: pathologic, molecular, clinical correlates. Am J Med Genet A 140:2646–2706

    PubMed  Google Scholar 

  • Cohick WS, Clemmons DR (1993) The insulin-like growth factors. Annu Rev Physiol 55:131–153

    Article  PubMed  CAS  Google Scholar 

  • Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447

    PubMed  CAS  Google Scholar 

  • Conover CA (2008) Insulin-like growth factor-binding proteins and bone metabolism. Am J Physiol Endocrinol Metab 294:10–14

    Article  Google Scholar 

  • Deftos LJ (1998) Calcium and phosphate homeostasis, chapter 2. In: Clinical essentials of calcium and skeletal metabolism, 1st edn. Professional Communication Inc., pp 1–208. http://www.endotext.org/parathyroid/parathyroid2/ch01s05.html. Accessed 20 Apr 2011

  • Deftos LJ (2001) Immunoassays for PTH and PTHrP, chapter 9. In: Bilezikian JP, Marcus R, Levine A (eds) The parathyroids, 2nd edn. Academic Press, San Diego,pp 143–166

    Chapter  Google Scholar 

  • Deftos LJ, Gagel R (2000) Calcitonin and medullary thyroid carcinoma, chapter 265. In: Wyngarden JB, Bennett JC (eds) Cecil textbook of medicine, 21st edn. WB Saunders Company, Philadelphia, pp 1406–1409

    Google Scholar 

  • Delmas PD (1995) Biochemical markers for the assessment of bone turnover. In: Riggs BL, Melton J (eds) Osteoporosis: etiology, diagnosis, and management, 2nd edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Dempster DW, Cosman F, Parisien M et al (1993) Anabolic actions of parathyroid hormone on bone. Endocr Rev 14:690–709

    PubMed  CAS  Google Scholar 

  • Eriksen EF (1986) Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev 7:379–408

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Axelrod DW, Melsen F (1994) Bone histomorphometry. Raven Press, New York, pp 1–12

    Google Scholar 

  • Fernández-Tresguerres-Hernández-Gil I, Alobera-Gracia MA, del Canto-Pingarrón M et al (2006) Physiological bases of bone regeneration II. The remodeling process. Med Oral Patol Oral Cir Bucal 11:E151–E157

    PubMed  Google Scholar 

  • Fraher L (1993) Biochemical markers of bone turnover. Clin Biochem 26:431–432

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SK (1997) Biochemical markers of bone metabolism as they relate to osteoporosis. MLO: Med Lab Obs 29(8):50. FindArticles.com.

  • Gori F, Hofbauer LC, Dunstan CR et al (2000) The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141:4768–4776

    Article  PubMed  CAS  Google Scholar 

  • Grant SFA, Ralston SH (1997) Genes and osteoporosis. Endocrinology 8:232–239

    CAS  Google Scholar 

  • Hakeda Y, Kawaguchi H, Hurley M et al (1996) Intact insulin-like growth factor binding protein-5 (IGFBP-5) associates with bone matrix and the soluble fragments of IGFBP-5 accumulated in culture medium of neonatal mouse calvariae by parathyroid hormone and prostaglandin E2-treatment. J Cell Physiol 166:370–379

    Article  PubMed  CAS  Google Scholar 

  • Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Harvey S, Hull KL (1998) Growth hormone: a paracrine growth factor? Endocrine 7:267–279

    Article  Google Scholar 

  • Hill PA, Reynolds JJ, Meikle MC (1995) Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology 136:124–131

    Article  PubMed  CAS  Google Scholar 

  • Hock JM, Centrella M, Canalis E et al (2004) Insulin-like growth factor I (IGF-I) has independent effects on bone matrix formation and cell replication. Endocrinology 122:254–260

    Article  Google Scholar 

  • Hofbauer LC, Khosla S, Dunstan CR et al (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140:4367–4370

    Article  PubMed  CAS  Google Scholar 

  • Horowitz M (2003) Matrix proteins versus cytokines in the regulation of osteoblast function and bone formation. Calcif Tissue Int 72:5–7

    Article  PubMed  CAS  Google Scholar 

  • Horwood NJ, Elliott J, Martin TJ et al (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139:4743–4746

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Pilbeam CC, Raisz LG (1994) Anabolic effects of 3,3′,5- triiodothyronine and triiodothyroacetic acid in cultured neonatal mouse parietal bones. Endocrinology 135:971–976

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Pilbean CC, Harrison JR et al (1995) The role of prostaglandins in the regulation of bone metabolism. Clin Orthop 313:36–46

    PubMed  Google Scholar 

  • Knelles D, Barthel T, Kraus U et al (1997) Randomized trial comparing early postoperative irradiation vs. the use of nonsteroidal anti-inflammatory drugs for prevention of heterotopic ossification following prosthetic total hip replacement. Int J Radiat Oncol Biol Phys 39:961–966

    Article  PubMed  Google Scholar 

  • Kobayashi S, Takahashi HE, Ito A et al (2003) Trabecular minimodeling in human iliac bone. Bone 32:163–169

    Article  PubMed  CAS  Google Scholar 

  • Krishnan V, Bryant HU, Macdougald OA et al (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  • Lind M, Deleuran B, Thestrup-Pedersen K et al (1995) Chemotaxis of human osteoblasts. Effects of osteotropic growth factors. APMIS 103:140–146

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Cosman F, Zhou H et al (2006) A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest biopsy: early actions of teriparatide. J Bone Miner Res 21:366–373

    Article  PubMed  CAS  Google Scholar 

  • Locklin RM, Oreffo RO, Triffitt JT et al (1999) Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int 23:185–194

    Article  PubMed  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo JA (1992) The role of cytokines in the regulation of local bone resorption. Crit Rev Immunol 11:195–213

    Google Scholar 

  • Lukert BP, Kream BE (1996) Clinical and basic aspects of glucocorticoid action in bone. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic, San Diego, pp 533–548

    Google Scholar 

  • Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35:1301–1305

    Article  PubMed  CAS  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  • Marie PJ (2003) Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316:23–32

    Article  PubMed  CAS  Google Scholar 

  • Mills BG, Frausto A (1997) Cytokines expressed in multinucleated cells: Paget’s disease and giant cell tumors versus normal bone. Calcif Tissue Int 61:16–21

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Baylink DJ (1991) Bone growth factors. Clin Orthop 263:30–48

    PubMed  Google Scholar 

  • Mohanty M (1996) Cellular basis for failure of joint prosthesis. Biomed Mater Eng 6:165–172

    PubMed  CAS  Google Scholar 

  • Nash TJ, Howlett CR, Martin C et al (1994) Effects of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 15:203–208

    Article  PubMed  CAS  Google Scholar 

  • Netter FH (1987) Musculoskeletal system: anatomy, physiology, and metabolic disorders. Ciba-Geigy Corporation, Summit, pp 129–130. ISBN 0914168886

    Google Scholar 

  • Papanicolaou DA, Wilder RL, Manolagas SC et al (1998) The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 128:127–137

    PubMed  CAS  Google Scholar 

  • Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7

    Article  PubMed  CAS  Google Scholar 

  • Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277:8648–8657

    Article  PubMed  CAS  Google Scholar 

  • Plotkin LI, Aguirre JI, Kousteni S et al (2005) Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem 280:7317–7325

    Article  PubMed  CAS  Google Scholar 

  • Pocock NA, Eisman JA, Hopper JL et al (1987) Genetic determinants of bone mass in adults: a twin study. J Clin Invest 80:706–710

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG (1993) Bone cell biology: new approaches and unanswered questions. J Bone Miner Res 8:457–465

    Article  Google Scholar 

  • Raisz LG (1997) The osteoporosis revolution. Ann Intern Med 126:458–462

    PubMed  CAS  Google Scholar 

  • Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358

    PubMed  CAS  Google Scholar 

  • Reddy SV (2004) Regulatory mechanisms operative in osteoclasts. Crit Rev Eukaryot Gene Expr 14:255–270

    Article  PubMed  CAS  Google Scholar 

  • Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27:1229–1241

    Article  PubMed  CAS  Google Scholar 

  • Roodman GD, Kurihara N, Ohsaki Y et al (1992) Interleukin-6: a potential autocrine/paracrine agent in Paget’s disease of bone. J Clin Invest 89:46–52

    Article  PubMed  CAS  Google Scholar 

  • Rosen CJ, Donahue LR (1998) Insulin-like growth factors and bone – the osteoporosis connection revisited. Proc Soc Exp Biol Med 219:1–7

    PubMed  CAS  Google Scholar 

  • Sakou T (1998) Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22:591–603

    Article  PubMed  CAS  Google Scholar 

  • Schneider GB, Key LL, Popoff SN (1998) Osteopetrosis. Therapeutic strategies. Endocrinologist 8:409–417

    Article  Google Scholar 

  • Siris ES (1998) Paget’s disease of bone. J Bone Miner Res 13:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Takahashi N, Udagawa N et al (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  PubMed  CAS  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem cell niche. Blood 105:2631–2639

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL, Abu-Amer Y, Ross FP (1995) Molecular mechanisms of bone resorption. J Cell Biochem 59:1–10

    Article  PubMed  CAS  Google Scholar 

  • Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823

    Article  PubMed  CAS  Google Scholar 

  • Trueta J (1963) The role of blood vessels in osteogenesis. J Bone Joint Surg Br 45:402

    Google Scholar 

  • Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:339–409

    Article  Google Scholar 

  • Ubara Y, Fushimi T, Tagami T et al (2003) Histomorphometric features of bone in patients with primary and secondary hyperparathyroidism. Kidney Int 63:1809–1816

    Article  PubMed  Google Scholar 

  • Ubara Y, Tagami T, Nakanishi S et al (2005) Significance of minimodeling in dialysis patients with adynamic bone disease. Kidney Int 68:833–839

    Article  PubMed  Google Scholar 

  • Vaananen HK, Zhao H, Mulari M et al (2000) The cell biology of osteoclast function. J Cell Sci 113:377–381

    PubMed  CAS  Google Scholar 

  • Wheeless CR. http://www.wheelessonline.com/ortho/bone_remodeling. Accessed 20 Apr 2011

  • Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    PubMed  CAS  Google Scholar 

  • Xing L, Boyce BF (2005) Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun 328:709–720

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Komori T, Suda T et al (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21:393–411

    Article  PubMed  CAS  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  • Young MF (2003) Bone matrix proteins: more than markers. Calcif Tissue Int 72:2–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Kini M.D., DCP, DNB, FICP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kini, U., Nandeesh, B.N. (2012). Physiology of Bone Formation, Remodeling, and Metabolism. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds) Radionuclide and Hybrid Bone Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02400-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02400-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02399-6

  • Online ISBN: 978-3-642-02400-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics