Skip to main content

Role of Microbial Seed Priming and Microbial Phytohormone in Modulating Growth Promotion and Defense Responses in Plants

  • Chapter
  • First Online:
Advances in Seed Priming

Abstract

Plant growth and development are greatly affected by various biotic and abiotic stresses. Various strategies are utilized to minimize stresses in plants. Seed priming with beneficial microorganisms is one of the most beneficial methods to improve plant growth and development and induce systemic tolerance in plants towards biotic as well as abiotic stresses. Seed priming is a method of conditioning the seeds by plant growth-promoting microbes which provide better abilities to the plant to withstand various environmental challenges beginning from seed germination. Seed priming with beneficial microorganism is also known as bio-priming that enhances seed germination, protects germinating seed from different phytopathogens, and provides suitable conditions for establishment of the plant. Bio-priming has several mechanisms to stimulate morphogenesis and plant immunity, viz., production of phytohormones, induced expression of plant growth-promoting genes, increased nutrient status into the plant, mycoparasitism, antibiosis, induced phenolic production, activation of antioxidant production, and systemic defense activation. Some important microorganisms that synthesize phytohormones include Azotobacter spp., Pantoea agglomerans, Rhodospirillum rubrum, Rhizobium spp., Bacillus subtilis, Pseudomonas fluorescens, Paenibacillus polymyxa, Trichoderma spp., Pseudomonas putida, Rhizobium phaseoli, Bacillus cereus, and Acinetobacter calcoaceticus. The main objective of this chapter is to enlighten the importance of seed priming with microorganisms and the role of different phytohormones produced by them in modulating growth, development, and defense activation in the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  PubMed  CAS  Google Scholar 

  • Azcon R, Barea JM (1975) Synthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandii and Azotobacter beijerinckii related to effects produced on tomato plants. Plant Soil 43:609–619

    Article  CAS  Google Scholar 

  • Bal HB, Nayak L, Das S et al (2013) Isolation of ACC deaminase PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105

    Article  CAS  Google Scholar 

  • Bennett AJ, Whipps JM (2008) Dual application of beneficial microorganisms to seed during drum priming. Appl Soil Ecol 38:83–89

    Article  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Chapter  Google Scholar 

  • Bjorkman T, Blanchard LM, Harman GE (1998) Growth enhancement of shrunken-2 (sh2) sweet corn by Trichoderma harzianum 1295-22: effect of environmental stress. J Am Soc Hortic Sci 123:35–40

    Google Scholar 

  • Bomke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Article  PubMed  CAS  Google Scholar 

  • Callan NW, Mathre D, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. Hortic Sci 26:1163–1165

    Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP et al (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  PubMed  CAS  Google Scholar 

  • Chevalier F, Rossignol M (2011) Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency. J Plant Physiol 168:1885–1890

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520–525

    Article  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    Article  PubMed  CAS  Google Scholar 

  • Jaderlund L, Arthurson V, Granhall U et al (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32:388–398

    Article  CAS  Google Scholar 

  • Jain A, Singh A, Chaudhary A, Singh S et al (2014) Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Res Int 64:275–282

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2015) Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol 55:961–972

    Article  PubMed  CAS  Google Scholar 

  • Jha A, Saxena J, Sharma V (2013) An investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt and pH. Commun Soil Sci Plan 44:2443–2458

    Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515

    PubMed  CAS  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  PubMed  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    Article  PubMed  CAS  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:265–272

    Article  CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3:121–228

    Google Scholar 

  • Kumar G, Maharshi A, Patel J, Mukherjee A, Singh HB, Sarma BK (2016) Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra 21:206–218

    Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK et al (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  PubMed  CAS  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92 (fiw112)

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Morales LJ, Soto-Urzúa L, Baca BE, Sánchez-Ahédo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  PubMed  CAS  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  PubMed  CAS  Google Scholar 

  • McQuilken MP, Halmer P, Rhodes DJ (1998) Application of microorganisms to seeds. In: Formulation of microbial biopesticides. Springer, Dordrecht, pp 255–285

    Chapter  Google Scholar 

  • Meena S, Rakshit A, Meena VS (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 12:172–178

    Google Scholar 

  • Meena S, Rakshit A, Singh HB, Meena VS (2017) Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatal Agric Biotechnol 12:172–178

    Google Scholar 

  • Nadeem SM, Zaheer ZA, Naveed M et al (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63:225–232

    Article  CAS  Google Scholar 

  • Nieto KF, Frankenberger WT (1989) Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biol Biochem 21:967–972

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey PK, Yadav SK, Singh A, Sarma BK, Mishra A, Singh HB (2012) Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J Phytopathol 160:532–539

    Article  Google Scholar 

  • Patel JS, Singh A, Singh HB, Sarma BK (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci 6:608. https://doi.org/10.3389/fpls.2015.00608

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel JS, Sarma BK, Singh HB, Upadhyay RS, Kharwar RN, Ahmed M (2016) Pseudomonas fluorescens and Trichoderma asperellum enhance expression of Gα subunits of the pea heterotrimeric G-protein during Erysiphe pisi infection. Front Plant Sci 6:1206. https://doi.org/10.3389/fpls.2015.01206

    Article  PubMed  PubMed Central  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulucci NS, Gallarato LA, Reguera YB et al (2015) Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173:1–9

    Article  PubMed  CAS  Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestic. https://doi.org/10.4172/2155-6202.1000e112

  • Rakshit A, Pal S, Meena S, Manjhee B, Rai S, Rai A, Bhowmick MK, Singh HB (2014) Seed bio-priming: a potential tool in integrated resource management. SATSA Mukhaptra Ann Tech 18:94–103

    Google Scholar 

  • Rakshit A, Singh HB, Sen A (2015a) Nutrient use efficiency: from basics to advances. Springer, New Delhi

    Book  Google Scholar 

  • Rakshit A, Sunita K, Pal S, Singh A, Singh HB (2015b) Bio-priming mediated nutrient use efficiency of crop species. In: Rakshit A, Singh HB and Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 181–191

    Google Scholar 

  • Ray S, Yadav SK, Sarma BK, Singh HB, Singh S (2017) How the microbial consortium enhances the stress tolerance in plants during various environmental conditions. In: Singh SS (ed) Plants and microbes in ever changing environment. Nova Science Publisher, New York, pp 71–82

    Google Scholar 

  • Reddy PP (2013) Bio-priming of seeds. In: Reddy PP (ed) Recent advances in crop protection. Springer, New Delhi, pp 83–90

    Chapter  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, González-Lopez J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S et al (2012) Effect of inoculation with plant growth promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Sarkar A, Patel JS, Yadav S, Sarma BK, Srivastava JS, Singh HB (2014) Studies on rhizosphere-bacteria mediated biotic and abiotic stress tolerance in chickpea (Cicer arietinum L.). Vegetos 27(1):158–169

    Google Scholar 

  • Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 225–238

    Chapter  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Sharif RS (2012) Study of nitrogen rates effects and seed biopriming with PGPR on quantitative and qualitative yield of safflower (Carthamus tinctorius L.). Tech J Eng Appl Sci 2:162–166

    Google Scholar 

  • Singh HB (2016) Seed biopriming: a comprehensive approach towards agricultural sustainability. Indian Phytopathol 69:203–209

    Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2013a) Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Ann Appl Biol 163:33–46

    Article  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013b) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360

    Article  PubMed  CAS  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016a) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotech 9:361–365

    Article  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016b) Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 193:74–86

    Article  PubMed  Google Scholar 

  • Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB (2018) Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients. Frontiers in Plant Science 9:163

    Google Scholar 

  • Sinha RK, Valani D, Chauhan K, Agarwal S (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf 1:50–64

    Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:001438

    Article  CAS  Google Scholar 

  • Taller BJ, Wong TY (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    PubMed  PubMed Central  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • United Nations Department of Economic and Social Affairs (UN DESA) (2013) World population projected to reach 9.6 billion by 2050. UN DESA, New York. http://www.un.org/en/development/desa/news/population/un-report-world-population-projected to-reach-9-6- billion-by-2050.html

    Google Scholar 

  • Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273

    Article  CAS  Google Scholar 

  • Wright B, Rowse H, Whipps JM (2003) Microbial population dynamics on seeds during drum and steeping priming. Plant Soil 255:631–640

    Article  CAS  Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated Biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Intern J Agri Environ Biotech 6(2):255–259

    Google Scholar 

  • Yadav SK, Singh S, Singh HB, Sarma BK (2017) Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. J Agric Food Chem 65(30):6122–6130. https://doi.org/10.1021/acs.jafc.7b01326

    Article  PubMed  CAS  Google Scholar 

  • Younesi O, Moradi A (2014) Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agric (Polnohospodˇ arstvo) 60:10–21

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Biotechnology, New Delhi, India, for awarding project grant (BT/PR5990/AGR/5/587/2012). BKS and HBS are also thankful to the Indian Council of Agricultural Research, New Delhi, for providing financial assistance through the grant ICAR-NBAIM/AMAAS/2014-15/73. The authors are also grateful to Technology Development Component of the ICAR seed project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V., Maharshi, A., Singh, D.P., Upadhyay, R.S., Sarma, B.K., Singh, H.B. (2018). Role of Microbial Seed Priming and Microbial Phytohormone in Modulating Growth Promotion and Defense Responses in Plants. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming . Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_8

Download citation

Publish with us

Policies and ethics