Skip to main content

Anticancer Potential of Mangrove Plants: Neglected Plant Species of the Marine Ecosystem

  • Chapter
  • First Online:
Anticancer plants: Properties and Application

Abstract

Cancer has been one of the leading causes of infirmity and fatality around the world at the present time. This group of disease constitutes an immense onus on society in both economically developed and underdeveloped countries in a similar way. The emergence of cancer is because of many common factors such as the growth and aging of the population, as well as an increasing preponderance of predetermined imperiled factors such as smoking, obesity, physical idleness, and variable reproductive arrangements associated with urbanization and economic development most of which leads to stress. Currently, cancer research has been marked by a growing appreciation of the role of herbs in the cancer treatment. This is because, the current conventional cancer treatments involve synthetic chemical drugs which are often accompanied with an increased adverse events with unsatisfactory survival rate. Recently, herbal plants of tropical origin have been investigated for their anticancer activities, leaving behind the effervescence of macromolecules with much of the unexplored ethnobotanical significance of the multifarious mangrove flora and fauna. Mangrove environmental conditions are one of the toughest ecosystems on earth. Moreover, flora and fauna in such conditions are known to contain abundant bioactive compounds, such as hormones, antioxidants, fluorescent pigments, and other nutritional or pharmacologically significant compounds. Therefore, this chapter presents a brief overview of the anticancer activity of mangrove phytocompounds in bioconjugation with certain advanced therapeutic agents such as nanoparticles or nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateff AG, Konig M, Fisch KM (2002) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium. J Nat Prod 65:1605–1611

    Article  PubMed  CAS  Google Scholar 

  • ACS (2016) Cancer treatment and survivorship facts and figures 2016–2017. ACS, Atlanta, pp 1–40

    Google Scholar 

  • Akhtar MS, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15:9818–9823

    Article  PubMed  CAS  Google Scholar 

  • Alikunhi NM, Kandasamy K, Manivannan S (2010) Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J Diabetes 2:97–103

    Article  Google Scholar 

  • Alikunhi NM, Kandasamy K, Manoharan C, Subramanian M (2011) Insulin-like antigen of mangrove leaves and its anti-diabetic activity in alloxan induced diabetic rats. Nat Prod Lett 26:1161–1166

    Article  CAS  Google Scholar 

  • Anusri P, Siwattra C, Pranom C, Sirichai A, Khanitha P (2014) Inhibitor effects flavonoids from stem of Derris indica of on the formation of advanced glycation end products. J Ethnopharmacol 158:437–441

    Article  CAS  Google Scholar 

  • Ariole CN, Akinduyite AE (2016) Antibacterial potential of indigenous red mangrove (Rhizophora racemosa) fungal endophytes and bioactive compounds identification. Int J Microbiol Mycol 4:14–24

    Google Scholar 

  • Arunachalam C, Gayathri P (2010) Studies on bioprospecting of endophytic bacteria from the medicinal plant of Andrographis paniculata for their antimicrobial activity and antibiotic susceptibility pattern. Int J Curr Pharm Res 4:63–68

    Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol Manag 10:421–452

    Article  CAS  Google Scholar 

  • Banker R, Carmeli S (1998) Tenuecyclamides AD, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeforme var. tenue. J Nat Prod 61:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Basha SKC, Rao KRSS (2017) An intrinsic assessment of bioactive potentiality of mangroves actinomycetes. J Entomol Zoo Stud 5:20–26

    Google Scholar 

  • Berenguer B, Sanchez LM, Quılez A, López-Barreiro M, de Haro O, Gálvez J, Martín MJ (2006) Protective and antioxidant effects of Rhizophora mangle L. against NSAID-induced gastric ulcers. J Ethnopharmacol 103:194–200

    Article  PubMed  CAS  Google Scholar 

  • Bhimb BV, Franco DA, Jose GM, Mathew JM, Joel EL (2011) Characterization of cytotoxic compound from mangrove derived fungi Irpex hydnoides VB4. Asian Pac J Trop Biomed 1:223–226

    Article  Google Scholar 

  • Boopathy NS, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:214186. https://doi.org/10.1155/2010/214186

    Article  CAS  Google Scholar 

  • Chakraborty K, Raola VK (2016) Two rare antioxidant and anti-inflammatory oleanenes from loop root Asiatic mangrove Rhizophora mucronate. Phytochemistry 135:160–168

    Article  CAS  Google Scholar 

  • Chakraborty T, Bhuniya D, Chatterjee M, Rahaman M, Singha D, Chatterjee BN, Datta S, Rana A, Samanta K, Srivastawa S, Maitra SK, Chatterjee M (2007) Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model. World J Gastroenterol 13:6538–6548

    PubMed  PubMed Central  Google Scholar 

  • Chan EWC, Wong SK, Chan HT, Baba S, Kezuka M (2016) Cerbera are coastal trees with promising anticancer properties but lethal toxicity: a short review. J Chin Pharm Sci 25:161–169

    Article  Google Scholar 

  • Chen ZS, Pan JH, Tang WC, Chen QC, Lin YC (2009) Biodiversity and biotechnological potential of mangrove associated fungi. J For Res 20:63–72

    Article  CAS  Google Scholar 

  • Dai SX, Li WX, Han FF, Guo YC, Zheng JJ, Liu JQ, Wang Q, Guo YD, Li GH, Huang JF (2016) In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  • Das SK, Samantaray D, Thatoi H (2014) Ethnomedicinal, antimicrobial and antidiarrhoeal studies on the mangrove plants of the genus Xylocarpus: a mini review. J Bioanal Biomed 2014:S12. https://doi.org/10.4172/1948-593X.S12-004

    Article  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De-Faria FM, Almeida ACA, Luiz F (2012) Mechanisms of action underlying the gastric antiulcer activity of the Rhizophora mangle L. J Ethnopharmacol 139:234–243

    Article  PubMed  CAS  Google Scholar 

  • Dissanayake N, Chandrasekara U (2014) Effects of mangrove zonation and the physicochemical parameters of soil on the distribution of macrobenthic fauna in kadolkele mangrove forest, a tropical mangrove forest in Sri Lanka. Adv Ecol Res 2014:1–13

    Article  Google Scholar 

  • Dong BX, Wan WY, Ying H, Zi-X D, Kui H (2014) Natural products from mangrove Actinomycetes, marine drugs. Mar Drugs 12:2590–2613

    Article  CAS  Google Scholar 

  • Dyshlovoy SA, Madanchi R, Hauschild J, Otte K, Alsdorf WH, Schumacher U, Kalinin VI, Silchenko AS, Avilov SA, Honecker F, Stonik VA, Bokemeyer C, von Amsber G (2017) The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer 17:93. https://doi.org/10.1186/s12885-017-3085-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gurel A, Atkas L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78

    CAS  Google Scholar 

  • Eldeen IMS, Effendy MAW (2013) Antimicrobial agents from mangrove plants and their ndophytes. In: Mendez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Centre, Spain, pp 872–882

    Google Scholar 

  • Fardin KM, Maria C, Marx Y (2015) Antifungal potential of Avicennia schaueriana Stapf & Leech. (Acanthaceae) against Cladosporium and Colletotrichum species. Lett Appl Microbiol 61:50–57

    Article  PubMed  CAS  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Yang C, Wang Y et al (2012) Streptocarbazoles A and B, two novel indolocarbazoles from the marine-derived actinomycete strain Streptomyces sp. FMA. Org Lett 14:2422–2425

    Article  PubMed  CAS  Google Scholar 

  • Gerwick WH, Fenical W (1981) Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) papenfuss. J Org Chem 46:22–27

    Article  CAS  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Gopal V, Yoganandam GP, Sri D, Ratnam CSL (2016) Ethno medical survey on coringa mangrove forest situated at east Godavari district of Andhra Pradesh India. J Sci 6:430–434

    Google Scholar 

  • Han LJ, Huang X, Dahse HM, Moellmann U, Fu H, Grabley S, Sattler I, Lin W (2007) Unusual naphtoquinone derivatives from the twigs of Avicennia marina. J Nat Prod 70:923–927

    Article  PubMed  CAS  Google Scholar 

  • Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11:176–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Lu CK, Tu MC, Chang JH, Chen YJ, Tu YH, Huang HC (2016) Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget 7:35874–35893

    PubMed  PubMed Central  Google Scholar 

  • Jha RK, Zi-Rong X (2004) Biomedical compounds from marine organisms. Mar Drugs 2:123–146

    Article  PubMed Central  CAS  Google Scholar 

  • Jia L, Yu J, Yang J, Song H, Liu X, Wang Y, Xu Y, Zhang C, Zhong Y, Li Q (2009) HCV antibody response and genotype distribution in different areas and races of China. Int J Biol Sci 5:421–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joel EL, Bhimba BV (2012) Fungi from mangrove plants: their antimicrobial and anticancer potentials. Int J Pharm Pharm Sci 4:139–142

    Google Scholar 

  • Kathiresan K (2010) Importance of mangroves of India. J Coastal Environ 1:11–26

    Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Kathiresan K, Manivannan S (2008) Bioprospecting of marine organisms for novel bioactive compounds. Sci Trans Environ Technol 1:107–120

    Google Scholar 

  • Khajure PV, Rathod JL (2011) Potential anticancer activity of Acanthus ilicifolius extracted from the mangroves forest of Karwar, west cost of India. World J Sci Technol 1:1–6

    Article  CAS  Google Scholar 

  • Kim KJ, Kim MA, Jung JH (2008) Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20. Arch Pharm Res 31:1572–1577

    Article  PubMed  CAS  Google Scholar 

  • Lam DM, Viet ND, Mo TT (2014) Screening for anticancer producing endophytic actinomycetes in three mangrove plant species in Nam Dinh province. J Sci Hnue 59:114–122

    Google Scholar 

  • Li H, Huang H, Shao C, Huang H, Jiang J, Zhu J, Liu Y, Liu L, Lu Y, Li M, Lin Y, She Z (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235

    Article  PubMed  CAS  Google Scholar 

  • Li W, Jiang Z, Shen L, Pedpradab P, Bruhn T, Wu J, Bringmann G (2015) Antiviral limonoids including khayanolides from the Trang mangrove plant Xylocarpus moluccensis. J Nat Prod 78:1570–1578

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Dai H, Makhloufi G, Heering C, Janiak C, Hartmann R, Mandi A, Kurtán T, Müller WEG, Kassack MU, Lin W, Liu Z, Proksch P (2016) Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus, Pestalotiopsis microspora. J Nat Prod 79:2332–2340

    Article  PubMed  CAS  Google Scholar 

  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin. J Nat Prod 64:907–910

    Article  PubMed  CAS  Google Scholar 

  • Mahmud I, Islam MK, Saha S, Barman AK, Rahman MM, Anisuzzman M, Rahman T, Al-Nahain A, Jahan R, Rahmatullah M (2014) Pharmacological and ethnomedicinal overview of Heritiera fomes: future prospects. Int Sch Res Not 2014:938543. https://doi.org/10.1155/2014/938543

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangamuri U, Muvva V, Poda S, Krishna Naragani K, Munaganti RK, Chitturi B, Yenamandra V (2016) Bioactive metabolites produced by Streptomyces cheonanensis VUK-A from Coringa mangrove sediments: isolation, structure elucidation and bioactivity. 3 Biotech 6:63. https://doi.org/10.1007/s13205-016-0398-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mani KT, Kumar S, Puta Z (2012) The gastroprotective role of Acanthus ilicifolius-a study to unravel the underlying mechanism of antiulcer activity. Sci Pharm 80:701–717

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278

    Article  PubMed  CAS  Google Scholar 

  • Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI, Ortega-Barría E, Gerwick WH, McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendhulkar VD, Yeragi LA, Kumar H (2017) Bioassay of vector larvaes with latex of blind eye mangrove plant Excoecaria agallocha Linn. Int J Mosq Res 4:33–36

    Google Scholar 

  • Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017c) Leptadenia reticulata (Retz.) Wight (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:E1019. https://doi.org/10.3390/molecules22061019

    Article  PubMed  CAS  Google Scholar 

  • Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143

    Article  PubMed  CAS  Google Scholar 

  • Neumann J, Yang Y, Kohler R, Giaisi M, Witzens-Harig M, Liu D, Krammer PH, Lin W, Li-Weber M (2015) Mangrove dolabrane-type of diterpenes tagalsins suppresses tumor growth via ROS-mediated apoptosis and ATM/ATR–Chk1/Chk2-regulated cell cycle arrest. Int J Cancer 137:2739–2748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen TH, Pham HV, Pham NK, Quach ND, Pudhom K, Hansen PE, Nguyen KP (2015) Chemical constituents from Sonneratia ovata Backer and their in vitro cytotoxicity and acetylcholinesterase inhibitory activities. Bioorg Med Chem Lett 25:2366–2371

    Article  PubMed  CAS  Google Scholar 

  • Patil RC, Manohar SM, Upadhye MV, Katchi VI, Rao AJ, Mule A, Moghe AS (2011) Anti reverse transcriptase and anticancer activity of stem ethanol extracts of Excoecaria agallocha (Euphorbiaceae). Ceylon J Bio Sci 40:147–155

    Google Scholar 

  • Patra JK, Dhal NK, Thatoi HN (2011) In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): a mangrove associate from Bhitarkanika, India. Asian Pac J Trop Med 4:727–734

    Article  PubMed  CAS  Google Scholar 

  • Patra JK, Das SK, Thatoi H (2014) Phytochemical profiling and bioactivity of a mangrove plant, Sonneratia apetala from Odisha coast of India. Chin J Integr Med 21:274–285

    Article  PubMed  CAS  Google Scholar 

  • Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4:e609–e616

    Article  PubMed  Google Scholar 

  • Prabhu VV, Guruvayoorappan C (2012) Anti-inflammatory and antitumor activity of the marine mangrove Rhizophora apiculate. J Immunotoxicol 9:341–352

    Article  PubMed  CAS  Google Scholar 

  • Prasannan P, Lekshmi M, Jayadev A (2016) Isolation and characterization of actinomycetes from mangrove samples. Int J Curr Sci Res 2:875–884

    Google Scholar 

  • Reddy ARK, Grace JR (2016a) Anticancer activity of methanolic extracts of selected mangrove plants. Int J Pharma Sci Res 7:3852–3856

    CAS  Google Scholar 

  • Reddy ARK, Grace JR (2016b) Evaluation of invitro anticancer activity of selected mangrove plant extracts against MCF7 cell line. Int J Pharma Sci Res 7:12315–12318

    Google Scholar 

  • Reza H, Haq WM, Das AK, Rahman S, Jahan R, Rahmatullah M (2011) Anti-hyperglycemic and antinociceptive activity of methanol lead and stem extract of Nypa fruticans Wrumb. Pak J Pharm Sci 24:485–488

    PubMed  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836

    Article  CAS  PubMed Central  Google Scholar 

  • Saad S, Taher M, Susanti D, Qaralleh H, Binti NA, Rahim A (2011) Antimicrobial activity of mangrove plant (Lumnitzera littorea). Asian Pac J Trop Med 4:523–525

    Article  PubMed  Google Scholar 

  • Sain M, Sharma V (2013) Catharanthus roseus (an anti-cancerous drug yielding plant)-a review of potential therapeutic properties. Int J Pure App Biosci 1:139–142

    Google Scholar 

  • Samarakoon SR, Shanmuganathan C, Ediriweera MK, Tennekoon KH, Piyathilaka P, Thabrew I, de Silva ED (2016a) In vitro cytotoxic and antioxidant activity of leaf extracts of mangrove plant, Phoenix paludosa Roxb. Trop J Pharm Res 15:127–132

    Article  CAS  Google Scholar 

  • Samarakoon SR, Shanmuganathan C, Ediriweera MK, Piyathilaka P, Tennekoon KH, Thabrew I (2016b) Screening of fifteen mangrove plants found in Sri Lanka for in-vitro cytotoxic properties on breast (MCF-7) and hepatocellular carcinoma (HepG2) cells. Eur J Med Plants 14:1–11

    Article  Google Scholar 

  • Saranraj P, Sujitha D (2015) Mangrove medicinal plant: a review. Am-Eur J Toxicol Sci 7:146–156

    Google Scholar 

  • Sarker S, Kuri KC, Chowdhury MSM, Rahman MT (2010) Mangrove: a livelihood option for coastal community of Bangladesh. Bang Res Publ J 3:1187–1192

    Google Scholar 

  • Satapathy S, Satapathy S, Jena BK (2013) Antitumor and growth effector screen of leaf extracts of selected mangroves of Bhitarkanika, Odisha. Int J Tech Enhanc Emerg Eng Res 1:25–30

    Google Scholar 

  • Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, Lee LH (2015) Presence ofantioxidative agent, Pyrrolo [1,2-a]pyrazine-1, 4-dione, hexahydro in newly isolated Streptomyces mangrovisoli sp. Front Microbiol 6:854. https://doi.org/10.3389/fmicb.2015.00854

    Article  PubMed  PubMed Central  Google Scholar 

  • Shareef M, Ashraf MA, Sarfraz M (2016) Natural cures for breast cancer treatment. Saudi Pharm J 24:233–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Simlai A, Roy A (2013) Biological activities and chemical constituents of some mangrove species from Sundarban estuary. An overview. Pharmacognosy 7:170–178

    Article  CAS  Google Scholar 

  • Singh D, Aeri V (2013) Phytochemical and pharmacological potential of Acanthus ilicifolius. J Pharm Bioallied Sci 5:17–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AK, Ansari A, Kumar D, Sarkar UK (2012) Status, biodiversity and distribution of mangroves in India: an overview. In: Proceedings of national conference on marine biodiversity, Uttar Pradesh State Biodiversity Board, Lucknow, pp 59–67

    Google Scholar 

  • Smitha RB, Madhusoodanan PV, Prakashkumar R (2014) Anticancer activity of Acanthus illicifolius Linn. from Chettuva mangroves, Kerala, India. Int J Bioassays 3:3452–3455

    Google Scholar 

  • Sofia S, Teresa MVM (2016) Investigation of bioactive compounds and antioxidant activity of Excoecaria agallocha, L. Int J Pharm Sci Res 7:5062–5066

    CAS  Google Scholar 

  • Sosovele ME, Bergmann B, Lyimo TJ, Hosea KM, Mueller BI (2012) Antimalarial activity of marine actinomycetes isolated from Dar Es Salaam mangrove sediments. Int J Res Bio Sci 2:177–181

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan Publisher, London, p 336

    Book  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH, Jacobs RS, Marshall LA (2002) Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res 51:112–114

    Article  PubMed  CAS  Google Scholar 

  • Sudheer NS, Rosamma P, Singh ISB (2012) Anti-white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon. Arch Virol 157:1665–1675

    Article  PubMed  CAS  Google Scholar 

  • Sukumaran S, Kiruba S, Mahesh M, Nisha SR, Miller PZ, Ben CP, Jeeva S (2011) Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pac J Trop Med 4:735–738

    Article  PubMed  CAS  Google Scholar 

  • Swamy MK, Sinniah UR, Akhtar MS (2015a) In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evidence-Based Compl Altern Med 2015:506413. https://doi.org/10.1155/2015/506413

    Article  Google Scholar 

  • Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015b) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A 151:939–944

    Article  CAS  Google Scholar 

  • Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015c) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81

    Article  CAS  Google Scholar 

  • Tan LTH, Ser HL, Yin WF, Chan KG, Lee LH, Goh BH (2015) Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front Microbiol 6:1316. https://doi.org/10.3389/fmicb.2015.01316

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao LY, Zhang JY, Liang YJ, Chen LM, Zheng LS, Wang F, Mi YJ, She ZG, To KKW, Lin YC, Fu LW (2010) Anticancer effect and structure activity analysis of marine products isolated from metabolites of mangrove fungi in South China sea. Mar Drugs 8:1094–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thajuddin N (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71

    CAS  Google Scholar 

  • Thatoi H, Samantaray D, Das SK (2016a) The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: a review. Front Life Sci 9:267–291

    Article  CAS  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016b) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol 163:311–318

    Article  CAS  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge, p 413

    Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  • Uddin SJ, Jason TLH, Beattie KD, Grice ID, Tiralongo E (2011) (2S,3S)-sulfated Pterosin C, a cytotoxic sesquiterpene from the Bangladeshi mangrove fern Acrostichum aureum. J Nat Prod 74:1–4

    Article  CAS  Google Scholar 

  • Uddin SJ, Grice D, Tiralongo E (2012) Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharm Biol 50:1276–1280

    Article  PubMed  CAS  Google Scholar 

  • Uddin SJ, Bettadapura J, Guillon P, Darren Grice I, Mahalingam S (2013) In-vitro antiviral activity of a novel phthalic acid ester derivative isolated from the Bangladeshi mangrove fern Acrostichum aureum. J Antivir Antiretrovir 5:39–144

    Google Scholar 

  • Urones JG, Araujo MEM, Palma FB, Basabe P, Marcos IS, Moro RF, Lithgow AM, Pineda J (1992) Meroterpenes from Cystoseira usneoides II. Phytochemistry 31:2105–2109

    Article  CAS  Google Scholar 

  • Valentin B, Agnel D, Franco J, Merin M, Geena MJ, Elsa LJ, Thangaraj M (2012) Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med 10:7780

    Google Scholar 

  • Valli S, Sugasini SS, Aysha OS, Nirmala P, Kumar PV, Reena A (2012) Antimicrobial potential of Actinomycetesspecies isolated from marine environment. Asian Pac J Trop Biomed 2:469–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vannucci M (2000) What is so special about mangroves. Braz J Biol 61:599–603

    Article  Google Scholar 

  • Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria-a review. J Acute Med 5:15–23

    Article  Google Scholar 

  • Wang J, Lu Z, Liu P, Wang Y, Li J, Hong K, Zhu W (2012) Cytotoxic polyphenols from the fungus Penicillium expansum 091006 endogenous with the mangrove plant Excoecaria agallocha. Planta Med 78:1861–1866

    Article  PubMed  CAS  Google Scholar 

  • Ward RD, Friess DA, Day RH, MacKenzie RA (2016) Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst Health Sust 2:e01211

    Article  Google Scholar 

  • Webber M, Calumpong H, Ferreira B, Granek E, Green S, Ruwa R, Soares M (2016) Mangroves Chapter 48. In United Nations, Treaty Series 996:1–18

    Google Scholar 

  • Wei PH, Wu SZ, Mu XM (2015) Effect of alcohol extract of Acantus ilicifoius L. on anti-duck hepatitis B virus and protection of liver. J Ethnopharmacol 160:1–5

    Article  PubMed  Google Scholar 

  • Wei-Yan QI, Na OU, Xiao-Dong WU, Han-Mei XU (2016) New arbutin derivatives from the leaves of Heliciopsis lobata with cytotoxicity. Chin J Nat Med 10:1–6

    Google Scholar 

  • Wenqiang G, Dan L, Jixing P, Tianjiao Z, Qianqun G, Dehai L (2015) Penicitols A−C and penixanacid A from the mangrove-derived Penicillium chrysogenum HDN11-24. J Nat Prod 78:306–310

    Article  CAS  Google Scholar 

  • WHO (2017) Cancer fact sheet 2017, France (http://www.who.int/mediacentre/factsheets/fs297/en/; Accessed on 19th May 2017)

  • Wibowo M, Prachyawarakorn V, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2016) Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Phytochemistry 122:126–138

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z, Yuan J (2010) SZ-685C, a marineanthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Brit J Pharmacol 159:689–697

    Article  CAS  Google Scholar 

  • Xu DB, Ye WW, Han Y, Deng ZX, Hong K (2014) Natural products from mangrove Actinomycetes. Mar Drugs 12:2590–2613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Zhang Y, Liu D, Li-Weber M, Shao B, Lin W (2015) Dolabrane-type diterpenes from the mangrove plant Ceriops tagal with antitumor activities. Fitoterapia 103:277–282

    Article  PubMed  CAS  Google Scholar 

  • Yin S, Can CQ, Wang XN, Lin LP, Ding J, Yue J (2006) Xylogranatins A-D: novel tetra-nortriterpenoids with an unusual 9, 10-secoscaffold from marine mangrove Xylocarpus grantum. Org Lett 8:4935–4938

    Article  PubMed  CAS  Google Scholar 

  • Yin S, Wang XN, Fan LLP, Ding J, Yue JM (2007) Limonoids from the seeds of the marine mangrove Xylocarpus granatum. J Nat Prod 70:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yin SY, Wei WC, Jian FY, Yang NS (2013) Therapeutic applications of herbal medicines for cancer patients. Evidence-Based Compl Altern Med 2013:302426. https://doi.org/10.1155/2013/302426

    Article  Google Scholar 

  • Yuan G, Hong K, Lin H (2013) Newazalomycin F analogs from mangrove Streptomyces sp. 211726 with activity against microbes and cancer cells. Mar Drugs 11:817–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue Q, Gao G, Zou G, Yu H, Zheng X (2017) Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int 2017:8412508. https://doi.org/10.1155/2017/8412508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang LY, Wei W, Guo Y, Wang T, Jiao RH, Ng SK, Tan RX, Ge HM (2012) Sesquiterpenoids from the mangrove-derived endophytic fungus Diaporthe sp. J Nat Prod 75:1744–1749

    Article  CAS  Google Scholar 

  • Zhou ZF, Taglialatela-Scafati O, Liu HL, Gu YC, Kong LY, Guo YW (2014) Apotirucallane protolimonoids from the Chinese mangrove, Xylocarpus granatum Koenig. J Fitoterapia 97:192–197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerry, R.G., Pradhan, P., Das, G., Gouda, S., Swamy, M.K., Patra, J.K. (2018). Anticancer Potential of Mangrove Plants: Neglected Plant Species of the Marine Ecosystem. In: Akhtar, M., Swamy, M. (eds) Anticancer plants: Properties and Application. Springer, Singapore. https://doi.org/10.1007/978-981-10-8548-2_13

Download citation

Publish with us

Policies and ethics