Skip to main content

Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition

  • Chapter
  • First Online:
Cardiovascular Engineering

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 711 Accesses

Abstract

Biopolymers are naturally occurring materials formed in nature during the life cycles of organisms. Biopolymers include the polysaccharides, carbohydrates and protein such as cellulose, starch, wool, silk, gelatine and collagen. In recent years, biopolymer-based hydrogels become important area of research in pharmaceutical aspects because of their promising properties in drug delivery system. These properties include low toxicity, biodegradability, stability and renewable nature. Numerous studies have been carried out in order to develop carrier from biopolymers with better controlled release properties. This is important to ensure precisely desired concentration of drug or essential nutrient absorption into the blood or tissue could be achieved. Among other different approaches, floating system is one of the most convenient, economical, and effective drug delivery system. Floating delivery system could potentially achieve longer retention time of carrier with capsulated bioactive drug or functional nutrients in the gastrointestinal tract. The floating behaviour of carrier could be induced by effervescent reactions. Effervescent reaction occurs between acidic gastric content and pore forming agent such as carbonates or bicarbonates salts incorporated into the carrier. This chapter discusses some of the use of biopolymers in drug delivery systems for effervescent reaction in gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., Bannerjee, K.S.: Drug delivery system: an updated review. Int. J. Pharm. Investig. 2(1), 2–11 (2012)

    Article  Google Scholar 

  2. Saboktakin, M.Z.: Hydrogels as potential nano-scale drug delivery systems. Biopolymers, 575–596 (2010)

    Google Scholar 

  3. Sharma, A.K.: Biopolymers in drug delivery. Biopolym. Res. 1(1) (2017)

    Google Scholar 

  4. Muhamad, I.I., Fen, L.S., Hui, H.Ng., Mustapha, N.A.: Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr. Polym. 83, 1207–1212 (2011)

    Article  Google Scholar 

  5. Peppas, N.A.: Hydrogels in Medicine and Pharmacy, vols. I–III. CRC, Boca Raton, FL (1987)

    Google Scholar 

  6. Ratner, B.D., Williams, D.F.: Biocompatibility of Clinical Implant Materials. CRC, Boca Raton, FL (1981)

    Google Scholar 

  7. Ratner, B.D., Hoffman, A.S., Andrade, J.D.: Hydrogels for Medical and Related Applications, p. 1. American Chemical Society, Washington, DC (1976)

    Book  Google Scholar 

  8. Nho, Y.C., Park, S.E., Kim, H.I., Hwang, T.S.: Oral delivery of insulin using pH sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation. Nucl. Instrum. Methods Phys. Res. B 236, 283–288 (2005)

    Article  Google Scholar 

  9. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)

    Article  Google Scholar 

  10. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A., Peppas, N.A.: Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009)

    Article  Google Scholar 

  11. Yaszemski, M., Trntolo, D., Lewandrowski, K.U., Hasirci, V., Altobelli, D., Wise, D. (eds.): Tissue Engineering and Novel Delivery Systems. CRC Press (2004)

    Google Scholar 

  12. Singh, B.M., Kim, K.H.: Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J. Controlled Release 63, 235–259 (2000)

    Article  Google Scholar 

  13. Bhardwaj, V., Nirmala, Harikumar, S.L.: Floating drug delivery system: a review. Pharmacophore 4(1), 26–38 (2013)

    Google Scholar 

  14. Dolas, T.R., Hosmani, A., Bhandari, A., Kumar, B., Somvanshi, S.: Novel sustained release gastroretentive drug delivery system: a review. Int. J. Pharm. Res. Dev. 2(11), 26–41 (2011)

    Google Scholar 

  15. Chordiya, M.A., Senthilkumaran, K., Gangurde, H.H., Tamizharasi, S.: Floating drug delivery system: a versatile approach for gastric retention. Int. J. Front. Res. 1(3), 96–112 (2011)

    Google Scholar 

  16. Mayavanshi, A.V., Gajjar, S.S.: Floating drug delivery systems to increase gastric retention of drugs: a review. Res. J. Pharm. Technol. 1(4), 345–348 (2008)

    Google Scholar 

  17. Bajpai, S.K., Sonkusley, J.: Hydrogels for oral drug delivery of peptides: synthesis and characterization. J. Appl. Polym. Sci. 83, 1717–1729 (2002)

    Article  Google Scholar 

  18. Graham, N.B., Mc-Neil, M.E.: Hydrogels for controlled drug delivery. Biomaterials 5(1), 27–36 (1984)

    Article  Google Scholar 

  19. Tangri, T., Khurana, S., Madhav, S.N.V.: Mucoadhesive drug delivery: mechanism and methods of evaluation. Int. J. Pharma Bio Sci. 2(1) (2011)

    Google Scholar 

  20. Omidian, H., Park, K.: Swelling agents and devices in oral drug delivery. J. Drug Deliv. Sci. Technol. 18(2), 83–93 (2008)

    Article  Google Scholar 

  21. Murata, Y., Kofuji, K., Kawashima, S.: Preparation of floating alginate beads for drug delivery to gastric mucosa. J. Biomater. Sci. Polym. Ed. 14(6), 581–588 (2003)

    Article  Google Scholar 

  22. Borase, C.B.: Floating systems for oral controlled release drug delivery. Int. J. Appl. Pharm. 4(2), 1–13 (2012)

    Google Scholar 

  23. Mor, J.: Progress in floating drug delivery systems. A review. Int. J. Pharma Profe. Res. 4(2), 441–446 (2011)

    Google Scholar 

  24. Chandel, A., Chauhan, K., Parashar, B., Kumar, H., Arora, S.: Floating drug delivery systems: a better approach. Int. Curr. Pharma. J. 1(5), 110–118 (2012)

    Article  Google Scholar 

  25. Ellis, H.A.: Basic Science: Anatomy of the Stomach: Surgery, vol. 29, pp. 541–543. Elsevier Ltd. (2011)

    Google Scholar 

  26. Dhole, A., Gaikwad, P., Bankar, V., Pawar, S.: A renew on floating multiparticulate drug delivery system: a novel approach to gastric retention. Int. J. Pharm. Sci. Rev. Res. 6(2), 205–211 (2011)

    Google Scholar 

  27. Patil, C., Baklilwal, S., Rane, B., Gurathi, N., Pawar, S.: Floating microspheres: a promising approach for gastric retention. Ins. J. Pharma. Res. Dev. 12(2), 26–38 (2011)

    Google Scholar 

  28. Cardinal, J.R.: Gastric Retentive Drug Delivery Systems, 1st edn. Wiley, Sharon, MA (2011)

    Chapter  Google Scholar 

  29. Gadad, A.P., Patil, M.B., Naduvinamani, S.N., Matiholimath, V.S., Dandagi, P.M, Kulkarni, A.R.: Sodium alginate polymeric floating beads for the delivery of cefpodoxime proxetil. J. Appl. Polym. Sci. 114(3), 1921–1926 (2009)

    Article  Google Scholar 

  30. Goyal, M., Prajapati, R., Purohit, K., Mehta, S.: Floating drug delivery system: a review. J. Curr. Pharma. Res. 5(1), 7–18 (2011)

    Google Scholar 

  31. Lieberman, H.A., Lachman, L., Schwartz, J.B.: Pharmaceutical Dosage Forms: Tablets, p. 153. Dekker, New York (1990)

    Google Scholar 

  32. Zhao, Y., Martin, B.R., Weaver, C.M.: Calcium bioavailability of calcium carbonate fortified soymilk is equivalent to cow’s milk in young women. J. Nutr. 135(10), 2379–2382 (2005)

    Article  Google Scholar 

  33. Yellanki, S.K., Nerella, N.K.: Stomach specific drug delivery of riboflavin using floating alginate beads. Int. J. Pharm. Pharm. Sci. 2(2), 160–163 (2010)

    Google Scholar 

  34. Sriamornsak, P., Sungthongjeen, S., Puttipipatkhachorn, S.: Use of pectin as a carrier for intragastric floating drug delivery: carbonate salt contained beads. Carbohydr. Polym. 67(3), 436–445 (2007)

    Article  Google Scholar 

  35. Abou El Ela, A.E.S.F., Hassan, M.A., El- Maraghy, D.: Ketorolac tromethamine floating beads for oral application: characterization and in vitro/in vivo evaluation. Saudi Pharm. J. 22, 349–359 (2014)

    Article  Google Scholar 

  36. Pahwa, R., Bhagwan, S., Kumar, V., Kohli, K.: Available online through role of natural polymers in the development of floating drug delivery systems. J. Pharm. Res. 3(6), 1312–1318 (2010)

    Google Scholar 

  37. Park, Y.J., Liang, J., Yang, Z., Yang, V.C.: Controlled release of clot-dissolving tissue-type plasminogen activator from a poly (L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Controlled Release 75, 37–44 (2001)

    Article  Google Scholar 

  38. Baumgarter, S., Kristl, J., Vrecer, F., Vodopivec, P., Zorko, B.: Optimisation of floating matrix tablets and evaluation of their gastric residence time. Int. J. Pharm. 195, 125–135 (2000)

    Article  Google Scholar 

  39. Chen, J., Park, K.: Synthesis of fast-swelling, superporous sucrose hydrogels. Carbohydr. Polym. 41, 259–268 (2000)

    Article  Google Scholar 

  40. Mandel, K.G., Daggy, B.P., Brodie, D.A., Jacoby, H.I.: Alginate-raft formulations in the treatment of heartburn and acid reflux. Aliment. Pharmacol. Ther. 14, 669–690 (2000)

    Article  Google Scholar 

  41. Zaniboni, H.C., Fell, J.T., Collett, J.H.: Production and characterisation of enteric beads. Int. J. Pharm. 125, 151–155 (1995)

    Article  Google Scholar 

  42. Chen, Y.-C., Hoa, H.O., Lee, T.Y., Sheu, M.S.: Physical characterizations and sustained release profiling of gastroretentive drug delivery systems with improved floating and swelling capabilities. Int. J. Pharm. 441, 162–169 (2013)

    Article  Google Scholar 

  43. Krishnan, V., Sasikumar, S., Prabhu, F., Vijayaraghavan, R.: Effect of pore forming agents on the physical characteristics and release kinetics of levofloxacin hemihydrate from floating alginate drug delivery system—an in vitro study. Trends Biomater. Artif. Organs 24(3), 139–145 (2010)

    Google Scholar 

  44. Choi, B.Y., Park, H.J., Hwang, S.J., Park, J.B.: Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int. J. Pharm. 239(1–2), 81–91 (2002)

    Article  Google Scholar 

  45. Chang, P.R., Jian, R., Yu, J., Ma, X.: Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr. Polym. 80, 420–425 (2010)

    Article  Google Scholar 

  46. Tester, R.F., Karkalas, J., Qi, X.: Starch—composition, fine structure and architecture. J. Cereal Sci. 39, 151–165 (2004)

    Article  Google Scholar 

  47. Ellis, R.P., Cochrane, M.P., Dale, M.F.B., Duffus, C.M., Lynn, A., Morrison, I.M., Prentice, R.D.M., Swanston, J.S., Tiller, S.A.: Starch production and industrial use. J. Sci. Food Agric. 77, 289–311 (1998)

    Article  Google Scholar 

  48. Ismail, H., Irani, M., Ahmad, Z.: Starch-based hydrogels: present status and applications. Int. J. Polym. Mater. Polym. Biomater. 62, 411–420 (2013)

    Article  Google Scholar 

  49. White, R.J., Budarin, V.L., Clark, J.H.: Tuneable mesoporous materials from α-D-polysaccharides. ChemSusChem 1, 408–411 (2008)

    Article  Google Scholar 

  50. García-González, C.A., Alnaief, M., Smirnova, I.: Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86, 1425–1438 (2011)

    Article  Google Scholar 

  51. Athawale, V.D., Lele, V.: Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr. Polym. 35, 21–27 (1998)

    Article  Google Scholar 

  52. Zohuriaan-Mehr, M.J., Kabiri, K.: Superabsorbent polymer materials: a review. Iran. Polym. J. (Engl. Ed.) 17, 451–477 (2008)

    Google Scholar 

  53. Demitri, C., Del Sole, R., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A., Ambrosio, L., Nicolais, L.: Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 110, 2453–2460 (2008)

    Article  Google Scholar 

  54. Chan, S.W., Mirhosseini, H., Taip, F.S., Ling, T.C., Tan, C.P.: Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii (doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocolloids 30(2), 581–588 (2013)

    Article  Google Scholar 

  55. Relleve, L., Yoshii, F., Dela Rosa, A.M., Kume, T.: Radiation-modified hydrogel based on poly (n-vinyl-2-pyrrolidone) and carrageenan. Radiat. Phys. Chem. 273(1), 63–68 (1999)

    Google Scholar 

  56. Michel, G., Nyval-Collen, P., Barbeyron, T., Czjzek, M., Helbert, W.: Bioconversion of red seaweed galactants: a focus on bacterial agarases and carrageenanes. Appl. Microbiol. Biotechnol. 7(1), 23–33 (2006)

    Article  Google Scholar 

  57. Hui, N.H.: Effect of cross-linking on the properties of kappa-carrageenan/sodium carboxymethyl cellulose hydrogel. Degree thesis, Faculty of Chemical and Natural Resources Engineering, Universiti Tekbologi Malaysia (2009)

    Google Scholar 

  58. Flashaw, R., Bixler, H.J., Johndro, K.: Structure and performance of commercial kappa-2 carrageenan extracts I. Structure analysis. Food Hydrocolloids 15(1), 441–452 (2001)

    Article  Google Scholar 

  59. Imeson, A.: Thickening and Gelling Agents for Food, 2nd edn, pp. 45–83. Blackie Academic & Professional, London (1997)

    Book  Google Scholar 

  60. Hornof, M.D., Kast, C.E., Bernkop-Schnürch, A.: In vitro evaluation of the viscoelastic properties of chitosan–thioglycolic acid conjugates. Eur. J. Pharm. Biopharm. 55, 185–190 (2003)

    Article  Google Scholar 

  61. Nilsen-Nygaard, J., Strand, S., Vårum, K., Draget, K., Nordgård, C.: Chitosan: gels and interfacial properties. Polymers 7, 552 (2015)

    Article  Google Scholar 

  62. Tuğcu-Demiröz, F., Acartürk, F., Erdoğan, D.: Development of long-acting bioadhesive vaginal gels of oxybutynin: formulation, in vitro and in vivo evaluations. Int. J. Pharm. 457(1), 25–39 (2013)

    Article  Google Scholar 

  63. Luukkonen, P., Schæfer, T., Hellén, L., Juppo, A.M., Yliruusi, J.: Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int. J. Pharm. 188(2), 181–192 (1999)

    Article  Google Scholar 

  64. Zahan, K.A., Pa’e, N., Muhamad, I.I.: Process parameter for fermentation in rotary discs reactor for optimum bacterial cellulose production using response surface methodology. BioResources 9(2), 1858–1872 (2014)

    Article  Google Scholar 

  65. Pa’e, N., Zahan, K.A., Muhamad, I.I.: Production of biopolymer from Acetobacter xylinum using different fermentation methods. Int. J. Eng. Technol. (IJET-IJENS) 11(5), 90–98 (2011)

    Google Scholar 

  66. Gao, X., Shi, Z., Lau, A., Liu, C., Yang, G., Silberschmidt, V.V.: Effect of microstructure on anomalous strain-rate-dependent behavior of bacterial cellulose hydrogel. Mater. Sci. Eng. C 62, 130–136 (2016)

    Article  Google Scholar 

  67. Horii, F., Yamamoto, H., Hirai, A.: Microstructural analysis of microfibrils of bacterial cellulose. Macromol. Symp. 120, 197–205 (1997)

    Article  Google Scholar 

  68. Tang, W., Jia, S., Jia, Y., Yang, H.: The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol. 26, 125–131 (2010)

    Article  Google Scholar 

  69. Ul-Islam, M., Khan, T., Park, J.K.: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88(2), 596–603 (2012)

    Article  Google Scholar 

  70. Aziz, M.A., Cabral, J.D., Brooks, H.J.L., Moratti, S.C., Hanton, L.R.: Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob. Agents Chemother. 56(1), 280–287 (2012)

    Article  Google Scholar 

  71. Sannino, A., Madaghiele, M., Conversano, F., Mele, G., Maffezzoli, A., Netti, P.A.: Cellulose derivative−hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1), 92–96 (2004)

    Article  Google Scholar 

  72. Ganguly, K., Chaturvedi, K., More, U.A., Nadagouda, M.N., Aminabhavi, T.M.: Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Controlled Release 193, 162–173 (2014)

    Article  Google Scholar 

  73. Burgain, J., Gaiani, C., Linder, M., Scher, J.: Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J. Food Eng. 104, 467–483 (2011)

    Article  Google Scholar 

  74. Dragan, E.S.: Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 243, 572–590 (2014)

    Article  Google Scholar 

  75. Cook, M.T., Tzortzis, G., Charalampopoulos, D., Khutoryanskiy, V.V.: Microencapsulation of probiotics for gastrointestinal delivery. J. Controlled Release 162, 56–67 (2012)

    Article  Google Scholar 

  76. Krasaekoopt, W., Bhandari, B., Deeth, H.: Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13, 3–13 (2003)

    Article  Google Scholar 

  77. Williams, D.H.: Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England (1986)

    Google Scholar 

  78. Shin, H., Temenoff, J.S., Mikos, A.G.: In vitro cytotoxicity of unsaturated oligo [poly (ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Biomacromolecules 4, 552–560 (2003)

    Article  Google Scholar 

  79. Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)

    Article  Google Scholar 

  80. Li, X., Kong, X., Zhang, Z., Nan, K., Li, L., Wang, X., Chen, H.: Cytotoxicity and biocompatibility evaluation of N, O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. Int. J. Biol. Macromol. 50, 1299–1305 (2012)

    Article  Google Scholar 

  81. Popa, E.G., Carvalho, P.P., Dias, A.F., Santos, T.C., Santo, V.E., Marques, A.P., Viegas, C.A., Dias, I.R., Gomes, M.E., Reis, R.L.: Evaluation of the in vitro and in vivo biocompatibility of carrageenan based hydrogels. J. Biomed. Mater. Res. Part A 102(11), 4087–4097 (2014)

    Article  Google Scholar 

  82. Mohamad, N., Amin, M.C.I.M., Pandey, M., Ahmad, N., Rajabb, N.F.: Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr. Polym. 114, 312–320 (2014)

    Article  Google Scholar 

  83. Lin, W., Lien, C., Yeh, H., Yu, C., Hsu, S.: Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603–611 (2013)

    Article  Google Scholar 

  84. Meenach, S.A., Anderson, A.A., Suthar, M., Anderson, K.W., Hilt, J.Z.: Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. J. Biomed. Mater. Res. Part A, 903–909 (2008)

    Article  Google Scholar 

  85. Ge, S., Wang, G., Shen, Y., Zhang, Q., Jia, D., Wang, H., Dong, Q., Yin, T.: Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. NanoBiotechnology 5, 36–40 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science, Technology and Innovation of Malaysia, Ministry of Higher Education of Malaysia and Research Management Centre of Universiti Teknologi Malaysia (UTM) for the support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Muhamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhamad, I.I., Selvakumaran, S., Sis, M.A.M., Pa’e, N., Salehudin, M.H. (2020). Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition. In: Dewi, D., Hau, Y., Khudzari, A., Muhamad, I., Supriyanto, E. (eds) Cardiovascular Engineering. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8405-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8405-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8404-1

  • Online ISBN: 978-981-10-8405-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics