Skip to main content

Genomics and Drug-Metabolizing Enzymes and Its Application in Drug Delivery: Evaluating the Influence of the Microbiome

  • Chapter
  • First Online:
Genomics-Driven Healthcare

Abstract

Biotransformation or metabolism is responsible for elimination of 70% of drugs available in the market today [1]. Drug-metabolizing enzymes (DMEs) are an assorted group of enzymes responsible for metabolizing xenobiotics such as drugs, carcinogens, pesticides, and food toxicants as well as endogenous compounds such as prostaglandins, steroids, and bile acids [2, 3]. R.T. Williams coined the concept of two-phase elimination of xenobiotics; reactions such as oxidation, reduction, and hydrolysis are categorized as phase I or activating reactions, while conjugation reactions constitutes phase II reactions and are generally detoxifying in nature [4]. Cytochrome P450 (CYP) families of enzymes are responsible for catalyzing majority of phase I reactions. Phase I reactions convert lipophilic molecules to their water-soluble counterparts [4]. Phase II reactions are catalyzed by enzymes such as uridine diphosphate glucuronosyltransferase (UGT), glutathione transferases (GSTs), N-acetyltransferase (NAT), and sulfotransferases (SULTs) [4]. Phase II enzymes catalyze conjugation of water-soluble molecules to intermediates of phase I reactions for the purpose of improving water solubility. In most cases, the net outcome of both phase I and phase II types of reactions is to impart hydrophilicity to xenobiotics and facilitate their elimination from the body. However, phase I and phase II reactions can also activate inert compounds to pharmacologically active entities [5], toxic end products, and procarcinogens into carcinogenic compounds [4, 6, 7]. CYPs and phase II metabolizing enzymes are known to exhibit polymorphism and have been associated with interindividual variability in drug response and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32(11):1201–1208

    Article  PubMed  CAS  Google Scholar 

  2. Coon MJ (2005) Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25

    Article  PubMed  CAS  Google Scholar 

  3. Guengerich FP, Rendic S (2010) Update information on drug metabolism systems-2009, part I. Curr Drug Metab 11(1):1–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Goldstein JA, Faletto MB (1993) Advances in mechanisms of activation and deactivation of environmental chemicals. Environ Health Perspect 100:169–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fura A, Shu YZ, Zhu M, Hanson RL, Roongta V, Humphreys WG (2004) Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery. J Med Chem 47(18):4339–4351

    Article  PubMed  CAS  Google Scholar 

  6. Kalgutkar AS, Vaz AD, Lame ME, Henne KR, Soglia J, Zhao SX, Abramov YA, Lombardo F, Collin C, Hendsch ZS, Hop CE (2005) Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos 33(2):243–253

    Article  PubMed  CAS  Google Scholar 

  7. Kalgutkar AS, Henne KR, Lame ME, Vaz AD, Collin C, Soglia JR, Zhao SX, Hop CE (2005) Metabolic activation of the nontricyclic antidepressant trazodone to electrophilic quinone-imine and epoxide intermediates in human liver microsomes and recombinant P4503A4. Chem Biol Interact 155(1–2):10–20

    Article  PubMed  CAS  Google Scholar 

  8. Evans DA, White TA (1964) Human acetylation polymorphism. J Lab Clin Med 63:394–403

    PubMed  CAS  Google Scholar 

  9. Gardiner SJ, Begg EJ (2006) Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 58(3):521–590

    Article  PubMed  CAS  Google Scholar 

  10. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526

    Article  PubMed  CAS  Google Scholar 

  11. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, Montgomery S, Tavare S, Deloukas P, Dermitzakis ET (2007) Population genomics of human gene expression. Nat Genet 39(10):1217–1224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E (2009) Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J 11(3):481–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou SF, Di YM, Chan E, Du YM, Chow VD, Xue CC, Lai X, Wang JC, Li CG, Tian M, Duan W (2008) Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 9(8):738–784

    Article  PubMed  CAS  Google Scholar 

  15. Gunes A, Dahl ML (2008) Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9(5):625–637

    Article  PubMed  CAS  Google Scholar 

  16. Guengerich FP, Shimada T (1998) Activation of procarcinogens by human cytochrome P450 enzymes. Mutat Res 400(1–2):201–213

    Article  PubMed  CAS  Google Scholar 

  17. Ikeya K, Jaiswal AK, Owens RA, Jones JE, Nebert DW, Kimura S (1989) Human CYP1A2: sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1A2 mRNA expression. Mol Endocrinol 3(9):1399–1408

    Article  PubMed  CAS  Google Scholar 

  18. Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41(2):89–295

    Article  PubMed  CAS  Google Scholar 

  19. Kall MA, Clausen J (1995) Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum Exp Toxicol 14(10):801–807

    Article  PubMed  CAS  Google Scholar 

  20. Relling MV, Lin JS, Ayers GD, Evans WE (1992) Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 52(6):643–658

    Article  PubMed  CAS  Google Scholar 

  21. Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L (2007) Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 63(6):537–546

    Article  PubMed  CAS  Google Scholar 

  22. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47(4):445–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Han XM, Ouyang DS, Chen XP, Shu Y, Jiang CH, Tan ZR, Zhou HH (2002) Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol 54(5):540–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Aklillu E, Carrillo JA, Makonnen E, Hellman K, Pitarque M, Bertilsson L, Ingelman-Sundberg M (2003) Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 64(3):659–669

    Article  PubMed  CAS  Google Scholar 

  25. Eap CB, Bender S, Jaquenoud Sirot E, Cucchia G, Jonzier-Perey M, Baumann P, Allorge D, Broly F (2004) Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol 24(2):214–219

    Article  PubMed  CAS  Google Scholar 

  26. Ozdemir V, Kalow W, Okey AB, Lam MS, Albers LJ, Reist C, Fourie J, Posner P, Collins EJ, Roy R (2001) Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C→A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine. J Clin Psychopharmacol 21(6):603–607

    Article  PubMed  CAS  Google Scholar 

  27. Melkersson KI, Scordo MG, Gunes A, Dahl ML (2007) Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry 68(5):697–704

    Article  PubMed  CAS  Google Scholar 

  28. Pavanello S, Mastrangelo G, Placidi D, Campagna M, Pulliero A, Carta A, Arici C, Porru S (2010) CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer. Eur J Epidemiol 25(7):491–500

    Article  PubMed  CAS  Google Scholar 

  29. B’Chir F, Pavanello S, Knani J, Boughattas S, Arnaud MJ, Saguem S (2009) CYP1A2 genetic polymorphisms and adenocarcinoma lung cancer risk in the Tunisian population. Life Sci 84(21–22):779–784

    Article  PubMed  CAS  Google Scholar 

  30. Olivieri EH, da Silva SD, Mendonca FF, Urata YN, Vidal DO, Faria Mde A, Nishimoto IN, Rainho CA, Kowalski LP, Rogatto SR (2009) CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients. Oral Oncol 45(9):e73–e79

    Article  PubMed  CAS  Google Scholar 

  31. Xu C, Goodz S, Sellers EM, Tyndale RF (2002) CYP2A6 genetic variation and potential consequences. Adv Drug Deliv Rev 54(10):1245–1256

    Article  PubMed  CAS  Google Scholar 

  32. Kamataki T, Fujieda M, Kiyotani K, Iwano S, Kunitoh H (2005) Genetic polymorphism of CYP2A6 as one of the potential determinants of tobacco-related cancer risk. Biochem Biophys Res Commun 338(1):306–310

    Article  PubMed  CAS  Google Scholar 

  33. Malaiyandi V, Sellers EM, Tyndale RF (2005) Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther 77(3):145–158

    Article  PubMed  CAS  Google Scholar 

  34. Mwenifumbo JC, Tyndale RF (2009) Molecular genetics of nicotine metabolism. Handb Exp Pharmacol 192:235–259

    Article  CAS  Google Scholar 

  35. Pearce R, Greenway D, Parkinson A (1992) Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation. Arch Biochem Biophys 298(1):211–225

    Article  PubMed  CAS  Google Scholar 

  36. Holzinger ER, Grady B, Ritchie MD, Ribaudo HJ, Acosta EP, Morse GD, Gulick RM, Robbins GK, Clifford DB, Daar ES, McLaren P, Haas DW (2012) Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet Genomics 22(12):858–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Turpeinen M, Raunio H, Pelkonen O (2006) The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 7(7):705–714

    Article  PubMed  CAS  Google Scholar 

  38. Owen A, Pirmohamed M, Khoo SH, Back DJ (2006) Pharmacogenetics of HIV therapy. Pharmacogenet Genomics 16(10):693–703

    Article  PubMed  CAS  Google Scholar 

  39. Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, Ando M (2003) Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos 31(4):398–403

    Article  PubMed  CAS  Google Scholar 

  40. Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Decosterd L, Blievernicht J, Saussele T, Gunthard HF, Schwab M, Eichelbaum M, Telenti A, Zanger UM (2007) Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther 81(4):557–566

    Article  PubMed  CAS  Google Scholar 

  41. Wang J, Sonnerborg A, Rane A, Josephson F, Lundgren S, Stahle L, Ingelman-Sundberg M (2006) Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics 16(3):191–198

    PubMed  Google Scholar 

  42. Ishikawa C, Ozaki H, Nakajima T, Ishii T, Kanai S, Anjo S, Shirai K, Inoue I (2004) A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin. J Hum Genet 49(10):582–585

    Article  PubMed  Google Scholar 

  43. Ozaki H, Ishikawa CT, Ishii T, Toyoda A, Murano T, Miyashita Y, Shirai K (2005) Clearance rates of cerivastatin metabolites in a patient with cerivastatin-induced rhabdomyolysis. J Clin Pharm Ther 30(2):189–192

    Article  PubMed  CAS  Google Scholar 

  44. Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, Houdt JV, Hendrickx J, Mannens G, Bohets H, Williams FM, Armstrong M, Crespi CL, Daly AK (2002) CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem Pharmacol 64(11):1579–1589

    Article  PubMed  CAS  Google Scholar 

  45. Soyama A, Saito Y, Komamura K, Ueno K, Kamakura S, Ozawa S, Sawada J (2002) Five novel single nucleotide polymorphisms in the CYP2C8 gene, one of which induces a frame-shift. Drug Metab Pharmacokinet 17(4):374–377

    Article  PubMed  CAS  Google Scholar 

  46. Cavaco I, Stromberg-Norklit J, Kaneko A, Msellem MI, Dahoma M, Ribeiro VL, Bjorkman A, Gil JP (2005) CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur J Clin Pharmacol 61(1):15–18

    Article  PubMed  CAS  Google Scholar 

  47. Rodriguez-Antona C, Niemi M, Backman JT, Kajosaari LI, Neuvonen PJ, Robledo M, Ingelman-Sundberg M (2008) Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J 8(4):268–277

    Article  PubMed  CAS  Google Scholar 

  48. Ferguson SS, LeCluyse EL, Negishi M, Goldstein JA (2002) Regulation of human CYP2C9 by the constitutive androstane receptor: discovery of a new distal binding site. Mol Pharmacol 62(3):737–746

    Article  PubMed  CAS  Google Scholar 

  49. Si D, Guo Y, Zhang Y, Yang L, Zhou H, Zhong D (2004) Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 14(7):465–469

    Article  PubMed  CAS  Google Scholar 

  50. Maekawa K, Harakawa N, Sugiyama E, Tohkin M, Kim SR, Kaniwa N, Katori N, Hasegawa R, Yasuda K, Kamide K, Miyata T, Saito Y, Sawada J (2009) Substrate-dependent functional alterations of seven CYP2C9 variants found in Japanese subjects. Drug Metab Dispos 37(9):1895–1903

    Article  PubMed  CAS  Google Scholar 

  51. Schwarz UI (2003) Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Investig 33(Suppl 2):23–30

    Article  CAS  Google Scholar 

  52. Thijssen HH, Ritzen B (2003) Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther 74(1):61–68

    Article  PubMed  CAS  Google Scholar 

  53. Kirchheiner J, Brockmoller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77(1):1–16

    Article  PubMed  CAS  Google Scholar 

  54. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41(12):913–958

    Article  PubMed  CAS  Google Scholar 

  55. Sagar M, Tybring G, Dahl ML, Bertilsson L, Seensalu R (2000) Effects of omeprazole on intragastric pH and plasma gastrin are dependent on the CYP2C19 polymorphism. Gastroenterology 119(3):670–676

    Article  PubMed  CAS  Google Scholar 

  56. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, Ikeda T, Kurihara A (2010) Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 38(1):92–99

    Article  PubMed  CAS  Google Scholar 

  57. Collet JP, Hulot JS, Anzaha G, Pena A, Chastre T, Caron C, Silvain J, Cayla G, Bellemain-Appaix A, Vignalou JB, Galier S, Barthelemy O, Beygui F, Gallois V, Montalescot G (2011) High doses of clopidogrel to overcome genetic resistance: the randomized crossover CLOVIS-2 (Clopidogrel and Response Variability Investigation Study 2). JACC Cardiovasc Interv 4(4):392–402

    Article  PubMed  Google Scholar 

  58. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, Sabatine MS (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360(4):354–362

    Article  PubMed  CAS  Google Scholar 

  59. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79(1):103–113

    Article  PubMed  CAS  Google Scholar 

  60. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E, Bertilsson L (2008) Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 65(5):767–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Teh LK, Bertilsson L (2012) Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 27(1):55–67

    Article  PubMed  CAS  Google Scholar 

  62. Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR, Branch RA (1985) Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther 38(4):402–408

    Article  PubMed  CAS  Google Scholar 

  63. Lee EJ, Nam YP, Hee GN (1988) Oxidation phenotyping in Chinese and Malay populations. Clin Exp Pharmacol Physiol 15(11):889–891

    Article  PubMed  CAS  Google Scholar 

  64. Bertilsson L, Lou YQ, Du YL, Liu Y, Kuang TY, Liao XM, Wang KY, Reviriego J, Iselius L, Sjoqvist F (1992) Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 51(4):388–97106

    Article  PubMed  CAS  Google Scholar 

  65. Roh HK, Dahl ML, Johansson I, Ingelman-Sundberg M, Cha YN, Bertilsson L (1996) Debrisoquine and S-mephenytoin hydroxylation phenotypes and genotypes in a Korean population. Pharmacogenetics 6(5):441–447

    Article  PubMed  CAS  Google Scholar 

  66. Tateishi T, Chida M, Ariyoshi N, Mizorogi Y, Kamataki T, Kobayashi S (1999) Analysis of the CYP2D6 gene in relation to dextromethorphan O-demethylation capacity in a Japanese population. Clin Pharmacol Ther 65(5):570–575

    Article  PubMed  CAS  Google Scholar 

  67. Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjoqvist F, Ingelman-Sundberg M (1994) Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 46(3):452–459

    PubMed  CAS  Google Scholar 

  68. Masimirembwa C, Persson I, Bertilsson L, Hasler J, Ingelman-Sundberg M (1996) A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. Br J Clin Pharmacol 42(6):713–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704

    Article  PubMed  Google Scholar 

  70. Kawanishi C, Lundgren S, Agren H, Bertilsson L (2004) Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 59(11):803–807

    Article  PubMed  CAS  Google Scholar 

  71. Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L, Hillman G, Hayes DF, Stearns V, Flockhart DA (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74

    Article  PubMed  CAS  Google Scholar 

  72. Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA (2008) Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 19(1):56–61

    Article  PubMed  CAS  Google Scholar 

  73. Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97(1):30–39

    Article  PubMed  CAS  Google Scholar 

  74. Bijl MJ, van Schaik RH, Lammers LA, Hofman A, Vulto AG, van Gelder T, Stricker BH, Visser LE (2009) The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat 118(1):125–130

    Article  PubMed  CAS  Google Scholar 

  75. Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Weinshilboum RM, Fritcher EG, Nibbe AM, Desta Z, Nguyen A, Flockhart DA, Perez EA, Ingle JN (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101(1):113–121

    Article  PubMed  CAS  Google Scholar 

  76. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, Simon W, Eichelbaum M, Brauch H (2007) Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25(33):5187–5193

    Article  PubMed  CAS  Google Scholar 

  77. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F (2007) Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82(1):41–47

    Article  PubMed  CAS  Google Scholar 

  78. Stamer UM, Lehnen K, Hothker F, Bayerer B, Wolf S, Hoeft A, Stuber F (2003) Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 105(1–2):231–238

    Article  PubMed  CAS  Google Scholar 

  79. El-Mallakh RS, Roberts RJ, El-Mallakh PL, Findlay LJ, Reynolds KK (2016) Pharmacogenomics in psychiatric practice. Clin Lab Med 36(3):507–523

    Article  PubMed  Google Scholar 

  80. Wojnowski L, Kamdem LK (2006) Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2(2):171–182

    Article  PubMed  CAS  Google Scholar 

  81. Lakhman SS, Ma Q, Morse GD (2009) Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics 10(8):1323–1339

    Article  PubMed  CAS  Google Scholar 

  82. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA (2002) Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 30(8):883–891

    Article  PubMed  CAS  Google Scholar 

  83. Hirota T, Ieiri I, Takane H, Maegawa S, Hosokawa M, Kobayashi K, Chiba K, Nanba E, Oshimura M, Sato T, Higuchi S, Otsubo K (2004) Allelic expression imbalance of the human CYP3A4 gene and individual phenotypic status. Hum Mol Genet 13(23):2959–2969

    Article  PubMed  CAS  Google Scholar 

  84. Hustert E, Zibat A, Presecan-Siedel E, Eiselt R, Mueller R, Fuss C, Brehm I, Brinkmann U, Eichelbaum M, Wojnowski L, Burk O (2001) Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Dispos 29(11):1454–1459

    PubMed  CAS  Google Scholar 

  85. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    Article  PubMed  CAS  Google Scholar 

  86. Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, Mohrenweiser HW, Goldstein JA (2003) Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 13(8):461–472

    Article  PubMed  CAS  Google Scholar 

  87. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307(2):573–582

    Article  PubMed  CAS  Google Scholar 

  88. Lee SS, Jung HJ, Park JS, Cha IJ, Cho DY, Shin JG (2010) Identification of a null allele of cytochrome P450 3A7: CYP3A7 polymorphism in a Korean population. Mol Biol Rep 37(1):213–217

    Article  PubMed  CAS  Google Scholar 

  89. Rodriguez-Antona C, Sayi JG, Gustafsson LL, Bertilsson L, Ingelman-Sundberg M (2005) Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles. Biochem Biophys Res Commun 338(1):299–305

    Article  PubMed  CAS  Google Scholar 

  90. Leeder JS, Gaedigk R, Marcucci KA, Gaedigk A, Vyhlidal CA, Schindel BP, Pearce RE (2005) Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther 314(2):626–635

    Article  PubMed  CAS  Google Scholar 

  91. Sim SC, Edwards RJ, Boobis AR, Ingelman-Sundberg M (2005) CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 15(9):625–631

    Article  PubMed  CAS  Google Scholar 

  92. Smit P, van Schaik RH, van der Werf M, van den Beld AW, Koper JW, Lindemans J, Pols HA, Brinkmann AO, de Jong FH, Lamberts SW (2005) A common polymorphism in the CYP3A7 gene is associated with a nearly 50% reduction in serum dehydroepiandrosterone sulfate levels. J Clin Endocrinol Metab 90(9):5313–5316

    Article  PubMed  CAS  Google Scholar 

  93. Hasegawa Y, Ando Y, Shimokata K (2006) Screening for adverse reactions to irinotecan treatment using the invader UGT1A1 molecular assay. Expert Rev Mol Diagn 6(4):527–533

    Article  PubMed  CAS  Google Scholar 

  94. Burchell B, Soars M, Monaghan G, Cassidy A, Smith D, Ethell B (2000) Drug-mediated toxicity caused by genetic deficiency of UDP-glucuronosyltransferases. Toxicol Lett 112-113:333–340

    Article  PubMed  CAS  Google Scholar 

  95. Satoh T, Ura T, Yamada Y, Yamazaki K, Tsujinaka T, Munakata M, Nishina T, Okamura S, Esaki T, Sasaki Y, Koizumi W, Kakeji Y, Ishizuka N, Hyodo I, Sakata Y (2011) Genotype-directed, dose-finding study of irinotecan in cancer patients with UGT1A1*28 and/or UGT1A1*6 polymorphisms. Cancer Sci 102(10):1868–1873

    Article  PubMed  CAS  Google Scholar 

  96. Rodriguez-Novoa S, Barreiro P, Jimenez-Nacher I, Soriano V (2006) Overview of the pharmacogenetics of HIV therapy. Pharmacogenomics J 6(4):234–245

    Article  PubMed  CAS  Google Scholar 

  97. Woillard JB, Rerolle JP, Picard N, Rousseau A, Drouet M, Munteanu E, Essig M, Marquet P, Le Meur Y (2010) Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 69(6):675–683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP (2007) Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132(1):272–281

    Article  PubMed  CAS  Google Scholar 

  99. Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM (2005) Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics 15(11):801–815

    Article  PubMed  CAS  Google Scholar 

  100. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6(3):243–250

    Article  PubMed  CAS  Google Scholar 

  101. Meyer UA, Zanger UM (1997) Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 37:269–296

    Article  PubMed  CAS  Google Scholar 

  102. Nowell S, Sweeney C, Winters M, Stone A, Lang NP, Hutchins LF, Kadlubar FF, Ambrosone CB (2002) Association between sulfotransferase 1A1 genotype and survival of breast cancer patients receiving tamoxifen therapy. J Natl Cancer Inst 94(21):1635–1640

    Article  PubMed  CAS  Google Scholar 

  103. Peklak-Scott C, Smitherman PK, Townsend AJ, Morrow CS (2008) Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin. Mol Cancer Ther 7(10):3247–3255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sweeney C, Ambrosone CB, Joseph L, Stone A, Hutchins LF, Kadlubar FF, Coles BF (2003) Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int J Cancer 103(6):810–814

    Article  PubMed  CAS  Google Scholar 

  105. Slattery JT, Sanders JE, Buckner CD, Schaffer RL, Lambert KW, Langer FP, Anasetti C, Bensinger WI, Fisher LD, Appelbaum FR et al (1995) Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant 16(1):31–42

    PubMed  CAS  Google Scholar 

  106. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial Flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ferreira CM, Vieira AT, Vinolo MAR, Oliveira FA, Curi R, Martins FDS (2014) The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res 2014:12

    Article  CAS  Google Scholar 

  110. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Yvonne Voigt A, Vestergaard H, Hercog R, Igor Costea P, Roat Kultima J, Li J, Jørgensen T, Levenez F, Dore J, Meta HIT c, Bjørn Nielsen H, Brunak S, Raes J, Hansen T, Wang J, Dusko Ehrlich S, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mikov M (1994) The metabolism of drugs by the gut flora. Eur J Drug Metab Pharmacokinet 19(3):201–207

    Article  PubMed  CAS  Google Scholar 

  113. Kang MJ, Kim HG, Kim JS, Oh DG, Um YJ, Seo CS, Han JW, Cho HJ, Kim GH, Jeong TC, Jeong HG (2013) The effect of gut microbiota on drug metabolism. Expert Opin Drug Metab Toxicol 9(10):1295–1308

    Article  PubMed  CAS  Google Scholar 

  114. Jourova L, Anzenbacher P, Anzenbacherova E (2016) Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap 160(3):317–326

    Article  Google Scholar 

  115. Saad R, Rizkallah MR, Aziz RK (2012) Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 4(1):1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeba Varghese Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.V. (2018). Genomics and Drug-Metabolizing Enzymes and Its Application in Drug Delivery: Evaluating the Influence of the Microbiome. In: Pathak, Y. (eds) Genomics-Driven Healthcare. Adis, Singapore. https://doi.org/10.1007/978-981-10-7506-3_9

Download citation

Publish with us

Policies and ethics