Skip to main content

Interaction of Salicylic Acid with Plant Hormones in Plants Under Abiotic Stress

  • Chapter
  • First Online:
Salicylic Acid: A Multifaceted Hormone

Abstract

Plants are exposed to a number of abiotic stresses like salinity, heavy metals, temperature, drought, etc. which have adverse effects on their growth and yield. They have well-developed mechanisms which recognize various stress signals and manage the plants to grow under these stresses. Phytohormones play a major role in stress protection in plants by intervening growth, nutrient distribution, development, and source/sink transitions. In plants, interaction between various phytohormones results in positive and negative cross talk that play an essential role in response to abiotic stresses. Their biosynthetic pathways and mechanisms of action are interlinked. A complex hormone signaling and their ability to interact with each other make them optimal candidates for negotiating defense responses. Salicylic acid (SA) is an important plant growth regulator which regulates various physiological processes such as seed development, seed establishment, cell growth, senescence etc. in plants. The interaction of SA with other hormones like auxins, gibberellins, abscisic acid, ethylene, cytokinin, polyamines, jasmonic acid, and brassinosteroids play an important role in fine-tuning the network of immune response against abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agtuca B, Rieger E, Hilger K, Song L, Robert CAM, Erb M (2014) Carbon-11 reveals opposing roles of auxin and salicylic acid in regulating leaf physiology, leaf metabolism, and resource allocation patterns that impact root growth in Zeamays. J Plant Growth Regul 33:328–339

    Article  CAS  Google Scholar 

  • Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Intgr Plant Biol 53(6):412–428

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimizing toxicity of cadmium in plants–role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Mahomed W, Reeksting BJ, Engelbrecht J, Ibarra-Laclette E, van den Berg N (2015) Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.) Front Plant Sci 6:300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandurska H, Stroiński A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Caarls L, Pieterse CMJ, Van Wees SC (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170. https://doi.org/10.3389/fpls.2015.00170

    Article  PubMed  PubMed Central  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:990–991

    Article  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller TA (2007) Flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Mur LAJ, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–437

    Article  CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SJ, Phillips AL, Hedden P (2014) The role of gibberellin signaling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai X, Cheng X, Li Y, Tang W, Han L (2012) Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysia grass (Zoysia japonica). Biologia 67(4):681–688

    Article  CAS  Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, London

    Google Scholar 

  • Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’ response to drought. J Plant Growth Regul 24:285–295

    Article  CAS  Google Scholar 

  • De Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant M (2007) Pseudomonas syringae pv. Tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding HD, Zhu XH, Zhu ZW, Yang SJ, Zha DS, Wu XX (2012) Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biol Plant 56(4):767–770

    Google Scholar 

  • Ding Y, Sheng JP, Li SY, Nie Y, Zhao JH, Zhu Z (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95

    Article  CAS  Google Scholar 

  • Ding Y, Zhao J, Nie Y, Fan B, Wu S, Zhang Y, Sheng J, Shen L, Zhao R, Tang X (2016) Salicylic-acid-induced chilling- and oxidative-stress tolerance in relation to gibberellin homeostasis, C- repeat/dehydration- responsive element binding factor pathway, and antioxidant enzyme systems in cold-stored tomato fruit. J Agric Food Chem 64:8200–8206

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Esan AM, Masisi K, Dada FA, Olaiya CO (2017) Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Sci Hort 216:278–283

    Article  CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen YT, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang JL (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Farber M, Attia Z, Weiss D (2016) Cytokinin activity increases stomatal density and transpiration rate in tomato. J Exp Bot. https://doi.org/10.1093/jxb/erw398

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55

    Google Scholar 

  • Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S (2014) Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. J Plant Physiol 171:940–950

    Article  CAS  PubMed  Google Scholar 

  • González-Gallegos E, Laredo-Alcalá E, Ascacio-Valdés J, Jasso de Rodríguez D, Hernández-Castillo FD (2015) Changes in the production of salicylic and jasmonic acid in potato plants (Solanum tuberosum) as response to foliar application of biotic and abiotic inductors. AJPS 6:1785–1791

    Article  CAS  Google Scholar 

  • Guzmán-Téllez E, Montenegro DD, Benavides-Mendoza A (2014) Concentration of salicylic acid in tomato leaves after foliar aspersions of this compound. Am J Plant Sci 5:2048–2056

    Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17(3):172–179

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Shin JH, Khan SA, Ahmad B, Shin DH, Khan AL, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA (2012) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 49–76

    Chapter  Google Scholar 

  • Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012) Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68

    Article  CAS  PubMed  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Casalongue CA (2011) Auxin and salicylic acid signalings counteract during the adaptive response to stress. Plant Signal Behav 6:452–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA (2011) Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208(2):175–180

    Article  CAS  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. MPMI 26:287–296

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11(12):6066–6079

    CAS  PubMed  Google Scholar 

  • Kaya C, Tuna AL, Yoka I (2009) The role of plant hormones in plants under salinity stress. In: Ashraf M, Ozturk M, Arthur HR (eds) Salinity and water stress: improving crop efficiency. Springer, Dordrecht

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Syeed S, Nazar R, Anjum NA (2012a) An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 277–300

    Google Scholar 

  • Khan NA, Nazar R, Iqbal N, Anjum NA (2012b) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin. https://doi.org/10.1007/978-3-642-25829-9

    Book  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8(11):e26374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mung bean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75(3):364–376

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957

    Article  CAS  PubMed  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Lee S, Park CM (2010) Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity. Plant Signal Behav 5:1534–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie CA, Romani RJ (1986) Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep 5:144–146

    Article  CAS  PubMed  Google Scholar 

  • Litvinovskaya RP, Vayner AA, Zhylitskaya HA, Kolupaev YE, Savachka AP, Khripach VA (2016) Synthesis and stress-protective action on plants of Brassinosteroid conjugates with salicylic acid. Chem Nat Compd 52:452

    Article  CAS  Google Scholar 

  • Lu H (2009) Dissection of salicylic acid-mediated defense signaling networks. Plant Signal Behav 4:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray JA (2006) The D-type cyclin CYCD3; 1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18(4):893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175. https://doi.org/10.3389/fpls.2014.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4.

    Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 49:79–90

    Google Scholar 

  • Molassiotis A, Diamantidis G, Therios I, Dimassi K (2005) Effects of salicylic acid on ethylene induction and antioxidant activity in peach root stock regenerants. Biol Plant 49:609–612

    Article  CAS  Google Scholar 

  • Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo SH, Urquhart W, Klessig DF, Kim SK, Nambara E, Yoshioka K (2010) The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner. Plant Physiol 152:1901–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–9

    Google Scholar 

  • Nazarli H, Ahmadi A, Hadian J (2014) Salicylic acid and methyl jasmonate enhance drought tolerance in chamomile plants. J Herb Med Pharmacol 3(2):87–92

    Google Scholar 

  • Németh M, Janda T, Horváth E, Páldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162(4):569–574

    Article  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23(6):2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134:492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakenfull RJ, Baxter R, Knight MR (2013) A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS One 8:e54119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pál M, Kovács V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T (2014) Salicylic acid and abiotic stress responses in rice. J Agro Crop Sci 200(1):1–1

    Article  CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Poór P, Kovács J, Szopkó D, Tari I (2013) Ethylene signalling in salt stress and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284

    Article  PubMed  CAS  Google Scholar 

  • Proietti S, Bertini L, Timperio AM, Zolla L, Caporale C, Caruso C (2013) Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Mol BioSyst 9:1169–1187

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Google Scholar 

  • Rao MV, Lee HI, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32: 447–456

    Google Scholar 

  • de los Reyes BG, Myers SJ, McGrath JM (2003) Differential induction of glyoxylate cycle enzymes by stress as a marker for seedling vigor in sugar beet (Beta vulgaris). Mol Genet Genomics 269:692–698

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283(5407):1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Bio 57:431–449

    Article  CAS  Google Scholar 

  • Shah SH (2007) Effects of salt stress on mustard as affected by gibberellic acid application. Gen Appl Plant Physiol 33:97–106

    CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164(3):317–322

    Article  CAS  Google Scholar 

  • Sheykhbaglou R, Rahimzadeh S, Ansari O, Sedghi M (2014) The effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (Sorghum bicolor L.) seeds under drought stress. J Stress Physiol Biochem 10(1):5–13

    Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56(2):114–121

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicas and Medicago truncatula. Plant Physiol 141:1473–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoll M, Brian L, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Strnad M, Hanuš J, Vaněk T, Kamínek M, Ballantine JA, Fussell B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus× canadensis Moench., cv. Robusta). Phytochemistry 45(2):213–218

    Article  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, Pál M, Janda T (2011) Abscisic acid may alter the salicylic acid-related abiotic stress response in maize. Acta Biol Szeged 55:155–157

    Google Scholar 

  • Szalai G, Pál M, Arendas T, Janda T (2016) Priming of seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Res Commun 44(4):537–548

    Article  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  CAS  PubMed  Google Scholar 

  • Szepesi A, Gémes K, Orosz G, Petô A, Takács Z, Vorák M, Tari I (2011) Interaction between salicylic acid and polyamines and their possible roles in tomato hardening processes. Acta Biol Szeged 55:165–166

    Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Boˇcová, B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Google Scholar 

  • Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597–1609

    Article  CAS  Google Scholar 

  • Tirani MM, Nasibi F, Kalantari Kh M (2013) Interaction of salicylic acid and ethylene and their effects on some physiological and biochemical parameters in canola plants (Brassica napus L.) Photosynthetica 51(3):411–418

    Article  CAS  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Lu H, Rate DN, Greenberg JT (2001) A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 28:209–216

    Article  CAS  PubMed  Google Scholar 

  • Vicent MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  Google Scholar 

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NF, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Jasmonic acid-mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul 30:512–523

    Article  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandea C, Redko Y, Jammes F, Valon C, Frey NFD, Leung J (2008) An update on abscisic acid signalling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    Article  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2002) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Google Scholar 

  • Xia J, Zhao H, Liu W, Li L, He Y (2009) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57(3):211

    Article  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293–303

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold; drought; and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Physiol 59:225–251

    CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Lin HH (2008) Minireview: role of salicylic acid in plant abiotic stress. Zeitschrift Naturforschung C 63(5–6):313–320

    CAS  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during ArabidopsisPseudomonas syringae interaction. Plant Physiol 145:450–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Yu B (2010) Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiol Biochem 48(6):417–425

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Ding Y, Zhao JH, Nie Y, Zhang Y, Sheng JP, Tang XM (2016) Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit. Food Bioproc Technol 9:1202–1209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bali, S. et al. (2017). Interaction of Salicylic Acid with Plant Hormones in Plants Under Abiotic Stress. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_10

Download citation

Publish with us

Policies and ethics