Skip to main content

Surface Engineering: Incorporation of Bioactive Compound

  • Chapter
  • First Online:
Bioactivity of Engineered Nanoparticles

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Surface engineering facilitates incorporation of various bioactive compounds and provides unique advantages for the specific delivery of imaging and therapeutic agents. Several molecules with imaging, diagnostic, prognostic, sensing, and therapy can be incorporated in the bioformulations with the help of different surface engineering techniques. This chapter reviews drug carriers which were surface engineered for targeted drug delivery at the requisite location. A single or combination of surface engineering has been used for efficient delivery of carriers. The carriers reviewed here were divided into two categories: lipid-based carriers (liposomes and solid lipid nanoparticles) and non-lipid-based carriers (niosomes, polymeric nanoparticles, hydrogels, dendrimers, quantum dots, gold nanoparticles, and mesoporous silica nanoparticles). Various kinds of bioactive compounds along with the involvement of surface engineering techniques in incorporation were also discussed. This chapter focuses on recent advances in the surface engineering of nanocarriers for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khodabandehloo H, Zahednasab H, Hafez AA (2016) Nanocarriers usage for drug delivery in cancer therapy. Iran J cancer Prev 9(2):e3966

    Google Scholar 

  2. Calixto G, Fonseca-Santos B, Chorilli M, Bernegossi J (2014) Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomed 9:3719

    Article  Google Scholar 

  3. Ruiz ME, Gantner ME, Talevi A (2014) Applications of nanosystems to anticancer drug therapy (Part II. Dendrimers, micelles, lipid-based nanosystems). Recent Pat Anticancer Drug Discov 9:99–128

    Article  Google Scholar 

  4. Drbohlavova J, Chomoucka J, Adam V et al (2013) Nanocarriers for anticancer drugs–new trends in nanomedicine. Curr Drug Metab 14:547–564

    Article  Google Scholar 

  5. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  Google Scholar 

  6. Sessa G, Weissmann G (1968) Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 9:310–318

    Google Scholar 

  7. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966

    Article  Google Scholar 

  8. Madni MA, Sarfraz M, Rehman M et al (2014) Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 17:401–426

    Article  Google Scholar 

  9. Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    Article  Google Scholar 

  10. Vemuri S, Yu C-D, Wangsatorntanakun V, Roosdorp N (1990) Large-scale production of liposomes by a microfluidizer. Drug Dev Ind Pharm 16:2243–2256

    Article  Google Scholar 

  11. http://www.microfluidicscorp.com. Accessed 6 Apr 2016

  12. Sollohub K, Cal K (2010) Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 99:587–597

    Article  Google Scholar 

  13. Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142:299–311

    Article  Google Scholar 

  14. Karn PR, Cho W, Park HJ et al (2013) Characterization and stability studies of a novel liposomal cyclosporin a prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. Int J Nanomed 8:365–377

    Google Scholar 

  15. Nag OK, Awasthi V (2013) Surface engineering of liposomes for stealth behavior. Pharmaceutics 5:542–569

    Article  Google Scholar 

  16. http://www.rxlist.com/doxil-drug.htm

  17. Balazs DA, Godbey W, Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:1–12

    Article  Google Scholar 

  18. Mirafzali Z Immunoliposomes. http://www.liposomes.org/2011/09/immunoliposomes.html

  19. Fraley R, Subramani S, Berg P, Papahadjopoulos D (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255:10431–10435

    Google Scholar 

  20. Fraley R, Straubinger RM, Rule G et al (1981) Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions. Biochemistry 20:6978–6987

    Article  Google Scholar 

  21. Tan Y (2001) Sequential injection of cationic liposome and plasmid DNA effectively transfects the lung with minimal inflammatory toxicity. Mol Ther 3:673–682

    Article  Google Scholar 

  22. Hoekstra SAD (2001) Cationic lipid-mediated transfection in vitro and in vivo. Mol Membr Biol 18:129–143

    Article  Google Scholar 

  23. Straubinger RM, Papahadjopoulos D (1983) [32] Liposomes as carriers for intracellular delivery of nucleic acids. Methods Enzymol 101:512–527

    Article  Google Scholar 

  24. Wyrozumska P, Meissner J, Toporkiewicz M et al (2015) Liposome-coated lipoplex-based carrier for antisense oligonucleotides. Cancer Biol Ther 16:66–76

    Article  Google Scholar 

  25. Li X, Ding L, Xu Y et al (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123

    Article  Google Scholar 

  26. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:1–8

    Article  Google Scholar 

  27. Zhao M, Chang J, Fu X et al (2012) Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target 20:416–421

    Article  Google Scholar 

  28. Li S, Goins B, Zhang L, Bao A (2012) Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 23:1322–1332

    Article  Google Scholar 

  29. Huang Y, Hemmer E, Rosei F, Vetrone F (2016) Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs. J Phys Chem B 120(22):4992–5001

    Article  Google Scholar 

  30. Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268

    Article  Google Scholar 

  31. Mayer LD, Bally MB, Cullis PR (1986) Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta Biomembr 857:123–126

    Article  Google Scholar 

  32. Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8:565–580

    Article  Google Scholar 

  33. Fenske DB, Cullis PR (2007) Encapsulation of drugs within liposomes by pH-gradient techniques. In: Gregoriadis G (ed) Liposome technol. Entrapment drugs other mater into liposomes, 3rd edn. Informa Healthcare, New York, pp 27–50

    Google Scholar 

  34. Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151:201–215

    Article  Google Scholar 

  35. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Springer, Berlin Heidelberg, pp 3–53

    Google Scholar 

  36. Lim SB, Banerjee A, Önyüksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163:34–45

    Article  Google Scholar 

  37. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  Google Scholar 

  38. Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71:161–172

    Article  Google Scholar 

  39. Benhabbour SR, Luft JC, Kim D et al (2012) In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric Z EGFR domain. J Control Release 158:63–71

    Article  Google Scholar 

  40. Patel JD, O’Carra R, Jones J et al (2007) Preparation and characterization of nickel nanoparticles for binding to his-tag proteins and antigens. Pharm Res 24:343–352

    Article  Google Scholar 

  41. Feng L, Mumper RJ (2013) A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 334:157–175

    Article  Google Scholar 

  42. Dagar S, Krishnadas A, Rubinstein I et al (2003) VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 91:123–133

    Article  Google Scholar 

  43. Gabizon A, Tzemach D, Gorin J et al (2010) Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66:43–52

    Article  Google Scholar 

  44. Puri A, Kramer-Marek G, Campbell-Massa R et al (2008) HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 18:293–307

    Article  Google Scholar 

  45. Beuttler J, Rothdiener M, Müller D et al (2009) Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL). Bioconjug Chem 20:1201–1208

    Article  Google Scholar 

  46. Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb) 46:249–251

    Article  Google Scholar 

  47. Cao Z, Tong R, Mishra A et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498

    Article  Google Scholar 

  48. Mamot C, Drummond DC, Noble CO et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638

    Article  Google Scholar 

  49. Hatakeyama H, Akita H, Ishida E et al (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342:194–200

    Article  Google Scholar 

  50. Zalba S, Contreras AM, Haeri A et al (2015) Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J Control Release 210:26–38

    Article  Google Scholar 

  51. Reynolds JG, Geretti E, Hendriks BS et al (2012) HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol Appl Pharmacol 262:1–10

    Article  Google Scholar 

  52. Chi B, Wong K, Qin L (2014) Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro. Dovepress, Auckland, pp 993–1001

    Google Scholar 

  53. Önyüksel H, Jeon E, Rubinstein I (2009) Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett 274:327–330

    Article  Google Scholar 

  54. Moody TW, Gozes I (2007) Vasoactive intestinal peptide receptors: a molecular target in breast and lung cancer. Curr Pharm Des 13:1099–1104

    Article  Google Scholar 

  55. Gespach C, Bawab W, De Cremoux P, Calvo F (1988) Pharmacology, molecular identification and functional characteristics of vasoactive intestinal peptide receptors in human breast cancer cells. Cancer Res 48:5079–5083

    Google Scholar 

  56. Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1:193–212

    Article  Google Scholar 

  57. Ashley CE, Carnes EC, Phillips GK et al (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397

    Article  Google Scholar 

  58. Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56:1055–1058

    Article  Google Scholar 

  59. Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv Drug Deliv Rev 56:1067–1084

    Article  Google Scholar 

  60. Alexis F, Basto P, Levy-Nissenbaum E et al (2008) HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3:1839–1843

    Article  Google Scholar 

  61. Leamon CP, Pastan I, Low PS (1993) Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells: contribution of translocation domain. J Biol Chem 268:24847–24854

    Google Scholar 

  62. Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13:256–262

    Article  Google Scholar 

  63. Wu J, Liu Q, Lee RJ (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316:148–153

    Article  Google Scholar 

  64. Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. BBA Biomembr 1233:134–144

    Article  Google Scholar 

  65. Shmeeda H, Mak L, Tzemach D et al (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5:818–824

    Article  Google Scholar 

  66. Gupta Y, Jain A, Jain P, Jain SK (2007) Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 15:231–240

    Article  Google Scholar 

  67. Puri A, Loomis K, Smith B et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580

    Article  Google Scholar 

  68. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8:1509–1528

    Article  Google Scholar 

  69. Edwards KA, Wang Y, Baeumner AJ (2010) Aptamer sandwich assays: human α-thrombin detection using liposome enhancement. Anal Bioanal Chem 398:2645–2654

    Article  Google Scholar 

  70. Helena Ng HL, Lu A, Lin G et al (2014) The potential of liposomes with carbonic anhydrase IX to deliver anticancer ingredients to cancer cells in vivo. Int J Mol Sci 16:230–255

    Article  Google Scholar 

  71. Il KD, Lee S, Lee JT et al (2011) Preparation and in vitro evaluation of anti-VCAM-1-Fab’-conjugated liposomes for the targeted delivery of the poorly water-soluble drug celecoxib. J Microencapsul 28:220–227

    Article  Google Scholar 

  72. Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860

    Article  Google Scholar 

  73. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498

    Article  Google Scholar 

  74. Bibi S, Lattmann E, Mohammed AR, Perrie Y (2012) Trigger release liposome systems: local and remote controlled delivery? J Microencapsul 29:262–276

    Article  Google Scholar 

  75. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827

    Article  Google Scholar 

  76. Li W, Nicol F, Szoka FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  Google Scholar 

  77. Yao L, Daniels J, Wijesinghe D et al (2013) PHLIP®-mediated delivery of PEGylated liposomes to cancer cells. J Control Release 167:228–237

    Article  Google Scholar 

  78. Peddada LY, Garbuzenko OB, Devore DI et al (2014) Delivery of antisense oligonucleotides using poly(alkylene oxide)-poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes. J Control Release 194:103–112

    Article  Google Scholar 

  79. Paliwal SR, Paliwal R, Agrawal GP, Vyas SP (2016) Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res 2104:1–12

    Google Scholar 

  80. Mills JK, Needham D (2006) Temperature-triggered nanotechnology for chemotherapy: rapid release from lysolipid temperature-sensitive liposomes. Small 2:5–8

    Google Scholar 

  81. pH and Temperature Sensitive Polymer Modified Liposomes. http://www.bu.edu/medal/research/chemotherapy/. Accessed 11 May 2016

  82. Zhang K, Liu M, Tong X et al (2015) Aptamer-modified temperature-sensitive liposomal contrast agent for magnetic resonance imaging. Biomacromolecules 16:2618–2623

    Article  Google Scholar 

  83. Wang Z-Y, Zhang H, Yang Y et al (2016) Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel. Drug Deliv 23:1222–1231

    Article  Google Scholar 

  84. Nobuto H, Sugita T, Kubo T et al (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109:627–635

    Article  Google Scholar 

  85. Pradhan P, Banerjee R, Bahadur D et al (2010) Targeted magnetic liposomes loaded with doxorubicin. In: Weissig V (ed) Liposomes, vol 605. Methods molecular biology. Humana Press, New Jersey, pp 279–293

    Chapter  Google Scholar 

  86. Vyas SP, Khar RK (2002) Nanoparticles. In: Targeted & controlled drug delivery. CBS Publishers & Distributors, New Delhi, pp 331–386

    Google Scholar 

  87. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    Article  Google Scholar 

  88. Kakkar D, Dumoga S, Kumar R et al (2015) PEGylated solid lipid nanoparticles: design, methotrexate loading and biological evaluation in animal models. Med Chem Commun 6:1452–1463

    Article  Google Scholar 

  89. Li R, Eun JS, Lee MK (2011) Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res 34:331–337

    Article  Google Scholar 

  90. Liu D, Liu Z, Wang L et al (2011) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces 85:262–269

    Article  Google Scholar 

  91. Kuotsu K, Karim K, Mandal A et al (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374

    Article  Google Scholar 

  92. Sankhyan A, Pawar P (2012) Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci 2:20–32

    Google Scholar 

  93. Niosome. https://en.wikipedia.org/wiki/Niosome

  94. Huang Y, Yu F, Liang W (2010) Niosomal delivery system for macromolecular drugs. In: Fanun M (ed) Colloids in drug delivery. CRC Press, Boca Raton, pp 355–364

    Google Scholar 

  95. Baillie AJ, Coombs GH, Dolan TF, Laurie J (1986) Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol 38:502–505

    Article  Google Scholar 

  96. Singh G, Dwivedi H, Saraf SK, Saraf SA (2011) Niosomal delivery of isoniazid—development and characterization. Trop J Pharm Res 10:203–210

    Article  Google Scholar 

  97. Taylor MJ, Tanna S, Sahota T (2010) In vivo study of a polymeric glucose-sensitive insulin delivery system using a rat model. J Pharm Sci 99:4215–4227

    Article  Google Scholar 

  98. Hamishehkar H, Rahimpour Y, Kouhsoltani M (2013) Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 10:261–272

    Article  Google Scholar 

  99. Luciani A, Olivier J-C, Clement O et al (2004) Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology 231:135–142

    Article  Google Scholar 

  100. Tila D, Yazdani-Arazi SN, Ghanbarzadeh S et al (2015) PH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI J 14:21–32

    Google Scholar 

  101. Yordanov G (2012) Poly (alkyl cyanoacrylate) nanoparticles as drug carriers: 33 years later. Bulg J Chem 1:61–73

    Google Scholar 

  102. Alhareth K, Vauthier C, Gueutin C et al (2011) Doxorubicin loading and in vitro release from poly(alkylcyanoacrylate) nanoparticles produced by redox radical emulsion polymerization. J Appl Polym Sci 119:816–822

    Article  Google Scholar 

  103. Zhang Y, Zhu S, Yin L et al (2008) Preparation, characterization and biocompatibility of poly(ethylene glycol)-poly(n-butyl cyanoacrylate) nanocapsules with oil core via miniemulsion polymerization. Eur Polym J 44:1654–1661

    Article  Google Scholar 

  104. Vauthier C, Dubernet C, Chauvierre C et al (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160

    Article  Google Scholar 

  105. Peracchia MT, Desmae D, Couvreur P, Angelo J (1997) Synthesis of a novel poly (MePEG cyanoacrylate-co-alkyl cyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules 30:846–851

    Article  Google Scholar 

  106. Sun W, Xie C, Wang H, Hu Y (2004) Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 25:3065–3071

    Article  Google Scholar 

  107. Roa WH, Azarmi S, Al-Hallak MHDK et al (2011) Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 150:49–55

    Article  Google Scholar 

  108. Kashanian S, Rostami E (2014) PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J Nanoparticle Res 16(3):1–10

    Article  Google Scholar 

  109. Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11:901–915

    Article  Google Scholar 

  110. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  Google Scholar 

  111. Knipe JM, Peppas NA (2014) Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 1:57–65

    Article  Google Scholar 

  112. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  Google Scholar 

  113. Ruel-Gariépy E, Shive M, Bichara A et al (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63

    Article  Google Scholar 

  114. Khodaverdi E, Tafaghodi M, Ganji F et al (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 13:460–466

    Article  Google Scholar 

  115. Guan Y, Zhao H-B, Yu L-X et al (2014) Multi-stimuli sensitive supramolecular hydrogel formed by host–guest interaction between PNIPAM-Azo and cyclodextrin dimers. RSC Adv 4:4955–4959

    Article  Google Scholar 

  116. Poly(N-isopropylacrylamide). https://en.wikipedia.org/wiki/Poly(N-isopropylacrylamide

  117. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6:1285–1309

    Article  Google Scholar 

  118. Arseneault M, Wafer C, Morin J-F (2015) Recent advances in click chemistry applied to dendrimer synthesis. Molecules 20:9263–9294

    Article  Google Scholar 

  119. Hannah H (2008) The role of dendrimers in topical drug delivery. Pharm Technol 32:88–98

    Google Scholar 

  120. Abbasi E, Aval S, Akbarzadeh A et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247–256

    Article  Google Scholar 

  121. Leiro V, Garcia JP, Tomás H, Pêgo AP (2015) The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug Chem 26:1185–1197

    Article  Google Scholar 

  122. PAMAM Dendrimers. http://www.dendritech.com/pamam.html

  123. PAMAM Dendrimers. http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=9539880

  124. PAMAM Dendrimers. http://www.andrewschemservices.com/

  125. Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    Article  Google Scholar 

  126. Lee CC, Gillies ER, Fox ME et al (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 103:16649–16654

    Article  Google Scholar 

  127. Jose J, Rn C (2016) Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int J Pharm Investig 6:123

    Article  Google Scholar 

  128. Dwivedi N, Shah J, Mishra V et al (2016) Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed 5063:1–24

    Google Scholar 

  129. Krishnan SR, George SK (2014) Nanotherapeutics in cancer prevention, diagnosis and treatment. In: Gowder S (ed) Pharmacology and therapeutics. InTech, Rijeka. doi:10.5772/58419

    Google Scholar 

  130. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  Google Scholar 

  131. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  Google Scholar 

  132. Ghaderi S, Ramesh B, Seifalian AM (2011) Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 19:475–486

    Article  Google Scholar 

  133. Qi L, Gao X (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267

    Article  Google Scholar 

  134. Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33(22):e190

    Article  Google Scholar 

  135. Yong KT, Wang Y, Roy I et al (2012) Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2:681–694

    Article  Google Scholar 

  136. Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  Google Scholar 

  137. Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53

    Article  Google Scholar 

  138. Wang H, Chen Y, Li X-Y, Liu Y (2006) Synthesis of oligo(ethylenediamino)-beta-cyclodextrin modified gold nanoparticle as a DNA concentrator. Mol Pharm 4:189–198

    Article  Google Scholar 

  139. Oishi M, Nakaogami J, Ishii T, Nagasaki Y (2006) Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem Lett 35:1046–1047

    Article  Google Scholar 

  140. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24:1415–1426

    Article  Google Scholar 

  141. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847

    Article  Google Scholar 

  142. Rahme K, Chen L, Hobbs RG et al (2013) AuNP92-PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv 3:6085

    Article  Google Scholar 

  143. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2:681–693

    Article  Google Scholar 

  144. O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  Google Scholar 

  145. Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554

    Article  Google Scholar 

  146. Cai Q-Y, Kim SH, Choi KS et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42:797–806

    Article  Google Scholar 

  147. Alric C, Taleb J, Le DG et al (2008) Contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915

    Article  Google Scholar 

  148. Van Schooneveld MM, Cormode DP, Koole R et al (2010) A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media Mol Imaging 5:231–236

    Article  Google Scholar 

  149. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  Google Scholar 

  150. Roggers R, Kanvinde S, Boonsith S, Oupický D (2014) The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech 15:1163–1171

    Article  Google Scholar 

  151. Kwon S, Singh RK, Perez RA et al (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4(1):2041731413503357

    Google Scholar 

  152. Mesoporous silica. https://en.wikipedia.org/wiki/Mesoporous_silica

  153. He Q, Zhang J, Shi J et al (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31:1085–1092

    Article  Google Scholar 

  154. Martínez-carmona M, Colilla M, Vallet-regí M (2015) Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials 5:1906–1937

    Article  Google Scholar 

  155. Gary-Bobo M, Hocine O, Brevet D et al (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423:509–515

    Article  Google Scholar 

  156. Meng H, Mai WX, Zhang H et al (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7:994–1005

    Article  Google Scholar 

  157. JOINT FORMULARY COMMITTEE (2014) Section 8: malignant disease and immunosuppression. In: British National Formulary, 68th edn (Sep 2014–Mar 2015). BMJ Group and Pharmaceutical Press, London, pp 562–645

    Google Scholar 

  158. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763

    Article  Google Scholar 

  159. Ishida T, Harashima H, Kiwada H (2001) Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab 2:397–409

    Article  Google Scholar 

  160. Laverman P, Carstens MG, Storm G, Moghimi SM (2001) Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity: Implications in experimental and clinical oncology. Biochim Biophys Acta Gen Subj 1526:227–229

    Article  Google Scholar 

  161. Sawant RR, Torchilin VP (2012) Challenges in development of targeted liposomal therapeutics. AAPS J 14:303–315

    Article  Google Scholar 

  162. Dams ET, Laverman P, Oyen WJ et al (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079

    Google Scholar 

  163. Ishida T, Masuda K, Ichikawa T et al (2003) Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm 255:167–174

    Article  Google Scholar 

  164. Ishida T, Ichihara M, Wang X et al (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112:15–25

    Article  Google Scholar 

  165. Moghimi SM, Hunter C (2001) Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carr Syst 18:24

    Article  Google Scholar 

  166. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65:21–23

    Article  Google Scholar 

  167. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 49:1993–2007

    Article  Google Scholar 

  168. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  Google Scholar 

  169. Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  Google Scholar 

  170. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Riaz, M.K., Tyagi, D., Yang, Z. (2017). Surface Engineering: Incorporation of Bioactive Compound. In: Yan, B., Zhou, H., Gardea-Torresdey, J. (eds) Bioactivity of Engineered Nanoparticles. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5864-6_6

Download citation

Publish with us

Policies and ethics