Advertisement

Surface Engineering: Incorporation of Bioactive Compound

  • Muhammad Kashif Riaz
  • Deependra Tyagi
  • Zhijun YangEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Surface engineering facilitates incorporation of various bioactive compounds and provides unique advantages for the specific delivery of imaging and therapeutic agents. Several molecules with imaging, diagnostic, prognostic, sensing, and therapy can be incorporated in the bioformulations with the help of different surface engineering techniques. This chapter reviews drug carriers which were surface engineered for targeted drug delivery at the requisite location. A single or combination of surface engineering has been used for efficient delivery of carriers. The carriers reviewed here were divided into two categories: lipid-based carriers (liposomes and solid lipid nanoparticles) and non-lipid-based carriers (niosomes, polymeric nanoparticles, hydrogels, dendrimers, quantum dots, gold nanoparticles, and mesoporous silica nanoparticles). Various kinds of bioactive compounds along with the involvement of surface engineering techniques in incorporation were also discussed. This chapter focuses on recent advances in the surface engineering of nanocarriers for therapeutic applications.

Keywords

Surface engineering Lipid carriers Non-lipid carriers Liposomes Active targeting Solid lipid nanoparticles Niosomes Polymeric nanoparticles Hydrogels Dendrimers Quantum dots Gold nanoparticles Mesoporous silica nanoparticles 

References

  1. 1.
    Khodabandehloo H, Zahednasab H, Hafez AA (2016) Nanocarriers usage for drug delivery in cancer therapy. Iran J cancer Prev 9(2):e3966Google Scholar
  2. 2.
    Calixto G, Fonseca-Santos B, Chorilli M, Bernegossi J (2014) Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomed 9:3719CrossRefGoogle Scholar
  3. 3.
    Ruiz ME, Gantner ME, Talevi A (2014) Applications of nanosystems to anticancer drug therapy (Part II. Dendrimers, micelles, lipid-based nanosystems). Recent Pat Anticancer Drug Discov 9:99–128CrossRefGoogle Scholar
  4. 4.
    Drbohlavova J, Chomoucka J, Adam V et al (2013) Nanocarriers for anticancer drugs–new trends in nanomedicine. Curr Drug Metab 14:547–564CrossRefGoogle Scholar
  5. 5.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRefGoogle Scholar
  6. 6.
    Sessa G, Weissmann G (1968) Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 9:310–318Google Scholar
  7. 7.
    Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966CrossRefGoogle Scholar
  8. 8.
    Madni MA, Sarfraz M, Rehman M et al (2014) Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 17:401–426CrossRefGoogle Scholar
  9. 9.
    Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18CrossRefGoogle Scholar
  10. 10.
    Vemuri S, Yu C-D, Wangsatorntanakun V, Roosdorp N (1990) Large-scale production of liposomes by a microfluidizer. Drug Dev Ind Pharm 16:2243–2256CrossRefGoogle Scholar
  11. 11.
    http://www.microfluidicscorp.com. Accessed 6 Apr 2016
  12. 12.
    Sollohub K, Cal K (2010) Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 99:587–597CrossRefGoogle Scholar
  13. 13.
    Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142:299–311CrossRefGoogle Scholar
  14. 14.
    Karn PR, Cho W, Park HJ et al (2013) Characterization and stability studies of a novel liposomal cyclosporin a prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. Int J Nanomed 8:365–377Google Scholar
  15. 15.
    Nag OK, Awasthi V (2013) Surface engineering of liposomes for stealth behavior. Pharmaceutics 5:542–569CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Balazs DA, Godbey W, Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:1–12CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Fraley R, Subramani S, Berg P, Papahadjopoulos D (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255:10431–10435Google Scholar
  20. 20.
    Fraley R, Straubinger RM, Rule G et al (1981) Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions. Biochemistry 20:6978–6987CrossRefGoogle Scholar
  21. 21.
    Tan Y (2001) Sequential injection of cationic liposome and plasmid DNA effectively transfects the lung with minimal inflammatory toxicity. Mol Ther 3:673–682CrossRefGoogle Scholar
  22. 22.
    Hoekstra SAD (2001) Cationic lipid-mediated transfection in vitro and in vivo. Mol Membr Biol 18:129–143CrossRefGoogle Scholar
  23. 23.
    Straubinger RM, Papahadjopoulos D (1983) [32] Liposomes as carriers for intracellular delivery of nucleic acids. Methods Enzymol 101:512–527CrossRefGoogle Scholar
  24. 24.
    Wyrozumska P, Meissner J, Toporkiewicz M et al (2015) Liposome-coated lipoplex-based carrier for antisense oligonucleotides. Cancer Biol Ther 16:66–76CrossRefGoogle Scholar
  25. 25.
    Li X, Ding L, Xu Y et al (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123CrossRefGoogle Scholar
  26. 26.
    Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:1–8CrossRefGoogle Scholar
  27. 27.
    Zhao M, Chang J, Fu X et al (2012) Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target 20:416–421CrossRefGoogle Scholar
  28. 28.
    Li S, Goins B, Zhang L, Bao A (2012) Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 23:1322–1332CrossRefGoogle Scholar
  29. 29.
    Huang Y, Hemmer E, Rosei F, Vetrone F (2016) Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs. J Phys Chem B 120(22):4992–5001CrossRefGoogle Scholar
  30. 30.
    Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268CrossRefGoogle Scholar
  31. 31.
    Mayer LD, Bally MB, Cullis PR (1986) Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta Biomembr 857:123–126CrossRefGoogle Scholar
  32. 32.
    Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8:565–580CrossRefGoogle Scholar
  33. 33.
    Fenske DB, Cullis PR (2007) Encapsulation of drugs within liposomes by pH-gradient techniques. In: Gregoriadis G (ed) Liposome technol. Entrapment drugs other mater into liposomes, 3rd edn. Informa Healthcare, New York, pp 27–50Google Scholar
  34. 34.
    Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151:201–215CrossRefGoogle Scholar
  35. 35.
    Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Springer, Berlin Heidelberg, pp 3–53Google Scholar
  36. 36.
    Lim SB, Banerjee A, Önyüksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163:34–45CrossRefGoogle Scholar
  37. 37.
    Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRefGoogle Scholar
  38. 38.
    Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71:161–172CrossRefGoogle Scholar
  39. 39.
    Benhabbour SR, Luft JC, Kim D et al (2012) In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric Z EGFR domain. J Control Release 158:63–71CrossRefGoogle Scholar
  40. 40.
    Patel JD, O’Carra R, Jones J et al (2007) Preparation and characterization of nickel nanoparticles for binding to his-tag proteins and antigens. Pharm Res 24:343–352CrossRefGoogle Scholar
  41. 41.
    Feng L, Mumper RJ (2013) A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 334:157–175CrossRefGoogle Scholar
  42. 42.
    Dagar S, Krishnadas A, Rubinstein I et al (2003) VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 91:123–133CrossRefGoogle Scholar
  43. 43.
    Gabizon A, Tzemach D, Gorin J et al (2010) Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66:43–52CrossRefGoogle Scholar
  44. 44.
    Puri A, Kramer-Marek G, Campbell-Massa R et al (2008) HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 18:293–307CrossRefGoogle Scholar
  45. 45.
    Beuttler J, Rothdiener M, Müller D et al (2009) Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL). Bioconjug Chem 20:1201–1208CrossRefGoogle Scholar
  46. 46.
    Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb) 46:249–251CrossRefGoogle Scholar
  47. 47.
    Cao Z, Tong R, Mishra A et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498CrossRefGoogle Scholar
  48. 48.
    Mamot C, Drummond DC, Noble CO et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638CrossRefGoogle Scholar
  49. 49.
    Hatakeyama H, Akita H, Ishida E et al (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342:194–200CrossRefGoogle Scholar
  50. 50.
    Zalba S, Contreras AM, Haeri A et al (2015) Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J Control Release 210:26–38CrossRefGoogle Scholar
  51. 51.
    Reynolds JG, Geretti E, Hendriks BS et al (2012) HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol Appl Pharmacol 262:1–10CrossRefGoogle Scholar
  52. 52.
    Chi B, Wong K, Qin L (2014) Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro. Dovepress, Auckland, pp 993–1001Google Scholar
  53. 53.
    Önyüksel H, Jeon E, Rubinstein I (2009) Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett 274:327–330CrossRefGoogle Scholar
  54. 54.
    Moody TW, Gozes I (2007) Vasoactive intestinal peptide receptors: a molecular target in breast and lung cancer. Curr Pharm Des 13:1099–1104CrossRefGoogle Scholar
  55. 55.
    Gespach C, Bawab W, De Cremoux P, Calvo F (1988) Pharmacology, molecular identification and functional characteristics of vasoactive intestinal peptide receptors in human breast cancer cells. Cancer Res 48:5079–5083Google Scholar
  56. 56.
    Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1:193–212CrossRefGoogle Scholar
  57. 57.
    Ashley CE, Carnes EC, Phillips GK et al (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397CrossRefGoogle Scholar
  58. 58.
    Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56:1055–1058CrossRefGoogle Scholar
  59. 59.
    Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv Drug Deliv Rev 56:1067–1084CrossRefGoogle Scholar
  60. 60.
    Alexis F, Basto P, Levy-Nissenbaum E et al (2008) HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3:1839–1843CrossRefGoogle Scholar
  61. 61.
    Leamon CP, Pastan I, Low PS (1993) Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells: contribution of translocation domain. J Biol Chem 268:24847–24854Google Scholar
  62. 62.
    Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13:256–262CrossRefGoogle Scholar
  63. 63.
    Wu J, Liu Q, Lee RJ (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316:148–153CrossRefGoogle Scholar
  64. 64.
    Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. BBA Biomembr 1233:134–144CrossRefGoogle Scholar
  65. 65.
    Shmeeda H, Mak L, Tzemach D et al (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5:818–824CrossRefGoogle Scholar
  66. 66.
    Gupta Y, Jain A, Jain P, Jain SK (2007) Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 15:231–240CrossRefGoogle Scholar
  67. 67.
    Puri A, Loomis K, Smith B et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580CrossRefGoogle Scholar
  68. 68.
    Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8:1509–1528CrossRefGoogle Scholar
  69. 69.
    Edwards KA, Wang Y, Baeumner AJ (2010) Aptamer sandwich assays: human α-thrombin detection using liposome enhancement. Anal Bioanal Chem 398:2645–2654CrossRefGoogle Scholar
  70. 70.
    Helena Ng HL, Lu A, Lin G et al (2014) The potential of liposomes with carbonic anhydrase IX to deliver anticancer ingredients to cancer cells in vivo. Int J Mol Sci 16:230–255CrossRefGoogle Scholar
  71. 71.
    Il KD, Lee S, Lee JT et al (2011) Preparation and in vitro evaluation of anti-VCAM-1-Fab’-conjugated liposomes for the targeted delivery of the poorly water-soluble drug celecoxib. J Microencapsul 28:220–227CrossRefGoogle Scholar
  72. 72.
    Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860CrossRefGoogle Scholar
  73. 73.
    Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498CrossRefGoogle Scholar
  74. 74.
    Bibi S, Lattmann E, Mohammed AR, Perrie Y (2012) Trigger release liposome systems: local and remote controlled delivery? J Microencapsul 29:262–276CrossRefGoogle Scholar
  75. 75.
    Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827CrossRefGoogle Scholar
  76. 76.
    Li W, Nicol F, Szoka FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985CrossRefGoogle Scholar
  77. 77.
    Yao L, Daniels J, Wijesinghe D et al (2013) PHLIP®-mediated delivery of PEGylated liposomes to cancer cells. J Control Release 167:228–237CrossRefGoogle Scholar
  78. 78.
    Peddada LY, Garbuzenko OB, Devore DI et al (2014) Delivery of antisense oligonucleotides using poly(alkylene oxide)-poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes. J Control Release 194:103–112CrossRefGoogle Scholar
  79. 79.
    Paliwal SR, Paliwal R, Agrawal GP, Vyas SP (2016) Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res 2104:1–12Google Scholar
  80. 80.
    Mills JK, Needham D (2006) Temperature-triggered nanotechnology for chemotherapy: rapid release from lysolipid temperature-sensitive liposomes. Small 2:5–8Google Scholar
  81. 81.
    pH and Temperature Sensitive Polymer Modified Liposomes. http://www.bu.edu/medal/research/chemotherapy/. Accessed 11 May 2016
  82. 82.
    Zhang K, Liu M, Tong X et al (2015) Aptamer-modified temperature-sensitive liposomal contrast agent for magnetic resonance imaging. Biomacromolecules 16:2618–2623CrossRefGoogle Scholar
  83. 83.
    Wang Z-Y, Zhang H, Yang Y et al (2016) Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel. Drug Deliv 23:1222–1231CrossRefGoogle Scholar
  84. 84.
    Nobuto H, Sugita T, Kubo T et al (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109:627–635CrossRefGoogle Scholar
  85. 85.
    Pradhan P, Banerjee R, Bahadur D et al (2010) Targeted magnetic liposomes loaded with doxorubicin. In: Weissig V (ed) Liposomes, vol 605. Methods molecular biology. Humana Press, New Jersey, pp 279–293CrossRefGoogle Scholar
  86. 86.
    Vyas SP, Khar RK (2002) Nanoparticles. In: Targeted & controlled drug delivery. CBS Publishers & Distributors, New Delhi, pp 331–386Google Scholar
  87. 87.
    Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490CrossRefGoogle Scholar
  88. 88.
    Kakkar D, Dumoga S, Kumar R et al (2015) PEGylated solid lipid nanoparticles: design, methotrexate loading and biological evaluation in animal models. Med Chem Commun 6:1452–1463CrossRefGoogle Scholar
  89. 89.
    Li R, Eun JS, Lee MK (2011) Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res 34:331–337CrossRefGoogle Scholar
  90. 90.
    Liu D, Liu Z, Wang L et al (2011) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces 85:262–269CrossRefGoogle Scholar
  91. 91.
    Kuotsu K, Karim K, Mandal A et al (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374CrossRefGoogle Scholar
  92. 92.
    Sankhyan A, Pawar P (2012) Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci 2:20–32Google Scholar
  93. 93.
  94. 94.
    Huang Y, Yu F, Liang W (2010) Niosomal delivery system for macromolecular drugs. In: Fanun M (ed) Colloids in drug delivery. CRC Press, Boca Raton, pp 355–364Google Scholar
  95. 95.
    Baillie AJ, Coombs GH, Dolan TF, Laurie J (1986) Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol 38:502–505CrossRefGoogle Scholar
  96. 96.
    Singh G, Dwivedi H, Saraf SK, Saraf SA (2011) Niosomal delivery of isoniazid—development and characterization. Trop J Pharm Res 10:203–210CrossRefGoogle Scholar
  97. 97.
    Taylor MJ, Tanna S, Sahota T (2010) In vivo study of a polymeric glucose-sensitive insulin delivery system using a rat model. J Pharm Sci 99:4215–4227CrossRefGoogle Scholar
  98. 98.
    Hamishehkar H, Rahimpour Y, Kouhsoltani M (2013) Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 10:261–272CrossRefGoogle Scholar
  99. 99.
    Luciani A, Olivier J-C, Clement O et al (2004) Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology 231:135–142CrossRefGoogle Scholar
  100. 100.
    Tila D, Yazdani-Arazi SN, Ghanbarzadeh S et al (2015) PH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI J 14:21–32Google Scholar
  101. 101.
    Yordanov G (2012) Poly (alkyl cyanoacrylate) nanoparticles as drug carriers: 33 years later. Bulg J Chem 1:61–73Google Scholar
  102. 102.
    Alhareth K, Vauthier C, Gueutin C et al (2011) Doxorubicin loading and in vitro release from poly(alkylcyanoacrylate) nanoparticles produced by redox radical emulsion polymerization. J Appl Polym Sci 119:816–822CrossRefGoogle Scholar
  103. 103.
    Zhang Y, Zhu S, Yin L et al (2008) Preparation, characterization and biocompatibility of poly(ethylene glycol)-poly(n-butyl cyanoacrylate) nanocapsules with oil core via miniemulsion polymerization. Eur Polym J 44:1654–1661CrossRefGoogle Scholar
  104. 104.
    Vauthier C, Dubernet C, Chauvierre C et al (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160CrossRefGoogle Scholar
  105. 105.
    Peracchia MT, Desmae D, Couvreur P, Angelo J (1997) Synthesis of a novel poly (MePEG cyanoacrylate-co-alkyl cyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules 30:846–851CrossRefGoogle Scholar
  106. 106.
    Sun W, Xie C, Wang H, Hu Y (2004) Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 25:3065–3071CrossRefGoogle Scholar
  107. 107.
    Roa WH, Azarmi S, Al-Hallak MHDK et al (2011) Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 150:49–55CrossRefGoogle Scholar
  108. 108.
    Kashanian S, Rostami E (2014) PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J Nanoparticle Res 16(3):1–10CrossRefGoogle Scholar
  109. 109.
    Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11:901–915CrossRefGoogle Scholar
  110. 110.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefGoogle Scholar
  111. 111.
    Knipe JM, Peppas NA (2014) Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 1:57–65CrossRefGoogle Scholar
  112. 112.
    Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633CrossRefGoogle Scholar
  113. 113.
    Ruel-Gariépy E, Shive M, Bichara A et al (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63CrossRefGoogle Scholar
  114. 114.
    Khodaverdi E, Tafaghodi M, Ganji F et al (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 13:460–466CrossRefGoogle Scholar
  115. 115.
    Guan Y, Zhao H-B, Yu L-X et al (2014) Multi-stimuli sensitive supramolecular hydrogel formed by host–guest interaction between PNIPAM-Azo and cyclodextrin dimers. RSC Adv 4:4955–4959CrossRefGoogle Scholar
  116. 116.
  117. 117.
    Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6:1285–1309CrossRefGoogle Scholar
  118. 118.
    Arseneault M, Wafer C, Morin J-F (2015) Recent advances in click chemistry applied to dendrimer synthesis. Molecules 20:9263–9294CrossRefGoogle Scholar
  119. 119.
    Hannah H (2008) The role of dendrimers in topical drug delivery. Pharm Technol 32:88–98Google Scholar
  120. 120.
    Abbasi E, Aval S, Akbarzadeh A et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247–256CrossRefGoogle Scholar
  121. 121.
    Leiro V, Garcia JP, Tomás H, Pêgo AP (2015) The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug Chem 26:1185–1197CrossRefGoogle Scholar
  122. 122.
  123. 123.
  124. 124.
  125. 125.
    Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38CrossRefGoogle Scholar
  126. 126.
    Lee CC, Gillies ER, Fox ME et al (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 103:16649–16654CrossRefGoogle Scholar
  127. 127.
    Jose J, Rn C (2016) Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int J Pharm Investig 6:123CrossRefGoogle Scholar
  128. 128.
    Dwivedi N, Shah J, Mishra V et al (2016) Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed 5063:1–24Google Scholar
  129. 129.
    Krishnan SR, George SK (2014) Nanotherapeutics in cancer prevention, diagnosis and treatment. In: Gowder S (ed) Pharmacology and therapeutics. InTech, Rijeka. doi: 10.5772/58419 Google Scholar
  130. 130.
    Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRefGoogle Scholar
  131. 131.
    Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144CrossRefGoogle Scholar
  132. 132.
    Ghaderi S, Ramesh B, Seifalian AM (2011) Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 19:475–486CrossRefGoogle Scholar
  133. 133.
    Qi L, Gao X (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267CrossRefGoogle Scholar
  134. 134.
    Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33(22):e190CrossRefGoogle Scholar
  135. 135.
    Yong KT, Wang Y, Roy I et al (2012) Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2:681–694CrossRefGoogle Scholar
  136. 136.
    Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  137. 137.
    Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53CrossRefGoogle Scholar
  138. 138.
    Wang H, Chen Y, Li X-Y, Liu Y (2006) Synthesis of oligo(ethylenediamino)-beta-cyclodextrin modified gold nanoparticle as a DNA concentrator. Mol Pharm 4:189–198CrossRefGoogle Scholar
  139. 139.
    Oishi M, Nakaogami J, Ishii T, Nagasaki Y (2006) Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem Lett 35:1046–1047CrossRefGoogle Scholar
  140. 140.
    Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24:1415–1426CrossRefGoogle Scholar
  141. 141.
    Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847CrossRefGoogle Scholar
  142. 142.
    Rahme K, Chen L, Hobbs RG et al (2013) AuNP92-PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv 3:6085CrossRefGoogle Scholar
  143. 143.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2:681–693CrossRefGoogle Scholar
  144. 144.
    O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176CrossRefGoogle Scholar
  145. 145.
    Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554CrossRefGoogle Scholar
  146. 146.
    Cai Q-Y, Kim SH, Choi KS et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42:797–806CrossRefGoogle Scholar
  147. 147.
    Alric C, Taleb J, Le DG et al (2008) Contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915CrossRefGoogle Scholar
  148. 148.
    Van Schooneveld MM, Cormode DP, Koole R et al (2010) A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media Mol Imaging 5:231–236CrossRefGoogle Scholar
  149. 149.
    Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  150. 150.
    Roggers R, Kanvinde S, Boonsith S, Oupický D (2014) The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech 15:1163–1171CrossRefGoogle Scholar
  151. 151.
    Kwon S, Singh RK, Perez RA et al (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4(1):2041731413503357Google Scholar
  152. 152.
  153. 153.
    He Q, Zhang J, Shi J et al (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31:1085–1092CrossRefGoogle Scholar
  154. 154.
    Martínez-carmona M, Colilla M, Vallet-regí M (2015) Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials 5:1906–1937CrossRefGoogle Scholar
  155. 155.
    Gary-Bobo M, Hocine O, Brevet D et al (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423:509–515CrossRefGoogle Scholar
  156. 156.
    Meng H, Mai WX, Zhang H et al (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7:994–1005CrossRefGoogle Scholar
  157. 157.
    JOINT FORMULARY COMMITTEE (2014) Section 8: malignant disease and immunosuppression. In: British National Formulary, 68th edn (Sep 2014–Mar 2015). BMJ Group and Pharmaceutical Press, London, pp 562–645Google Scholar
  158. 158.
    Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763CrossRefGoogle Scholar
  159. 159.
    Ishida T, Harashima H, Kiwada H (2001) Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab 2:397–409CrossRefGoogle Scholar
  160. 160.
    Laverman P, Carstens MG, Storm G, Moghimi SM (2001) Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity: Implications in experimental and clinical oncology. Biochim Biophys Acta Gen Subj 1526:227–229CrossRefGoogle Scholar
  161. 161.
    Sawant RR, Torchilin VP (2012) Challenges in development of targeted liposomal therapeutics. AAPS J 14:303–315CrossRefGoogle Scholar
  162. 162.
    Dams ET, Laverman P, Oyen WJ et al (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079Google Scholar
  163. 163.
    Ishida T, Masuda K, Ichikawa T et al (2003) Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm 255:167–174CrossRefGoogle Scholar
  164. 164.
    Ishida T, Ichihara M, Wang X et al (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112:15–25CrossRefGoogle Scholar
  165. 165.
    Moghimi SM, Hunter C (2001) Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carr Syst 18:24CrossRefGoogle Scholar
  166. 166.
    Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65:21–23CrossRefGoogle Scholar
  167. 167.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 49:1993–2007CrossRefGoogle Scholar
  168. 168.
    Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936CrossRefGoogle Scholar
  169. 169.
    Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654CrossRefGoogle Scholar
  170. 170.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Muhammad Kashif Riaz
    • 1
  • Deependra Tyagi
    • 1
  • Zhijun Yang
    • 1
    Email author
  1. 1.School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations